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CONSERVATION LAWS, EXTENDED POLYMATROIDS
AND MULTIARMED BANDIT PROBLEMS;
A POLYHEDRAL APPROACH
TO INDEXABLE SYSTEMS

DIMITRIS BERTSIMAS anD JOSE NINO-MORA

We show that if performance measures in stochastic and dynamic scheduling problems
satisfy generalized conservation laws, then the feasible region of achievable performance is a
polyhedron called an extended polymatroid, that generalizes the classical polymatroids
introduced by Edmonds. Optimization of a linear objective over an extended polymatroid is
solved by an adaptive greedy algorithm, which leads to an optimal solution having an
indexability property (indexable systems). Under a certain condition the indices possess a
stronger decomposition property (decomposable systems). The following problems can be
analyzed using our theory: multiarmed bandit problems, branching bandits, scheduling of
multiclass queues (with or without feedback), scheduling of a batch of jobs. Consequences of
our results include: (1) a characterization of indexable systems as systems that satisfy
generalized conservation laws, (2) a sufficient condition for indexable systems to be decom-
posable, (3) a new linear programming proof of the decomposability property of Gittins
indices 1n multiarmed bandit problems, (4) an approach to sensitivity analysis of indexable
systems, (5) a characterization of the indices of indexable systems as sums of dual variables,
and an economic interpretation of the branching bandit indices in terms of retirement
options, (6) an analysis of the indexability of undiscounted branching bandits, (7) a new
algonthm to compute the indices of indexable systems (in particular Gittins indices), as fast
as the fastest known algorithm, (8) a unification of Klimov’s algorithm for multiclass queues
and Gittins’ algorithm for multiarmed bandits as special cases of the same algorithm, (9) a
closed formula for the maximum reward of the multiarmed bandit problem, with a new proof
of its submodularity and (10) an understanding of the invariance of the indices with respect
to some parameters of the problem. Our approach provides a polyhedral treatment of several
classical problems in stochastic and dynamic scheduling and is able to address variations such
as: discounted versus undiscounted cost criterion, rewards versus taxes, discrete versus
continuous time, and linear versus nonlinear objective functions.

1. Introduction. In the mathematical programming tradition researchers and
practitioners solve optimization problems by defining decision variables and formulat-
ing constraints, thus describing the feasible space of decisions, and then applying
algorithms for the solution of the underlying optimization problem. For the most
part, the tradition for stochastic and dynamic scheduling problems has been, however,
quite different, as it relies primarily on dynamic programming formulations. Using
ingenious but often ad hoc methods, which exploit the structure of the particular
problem, researchers and practitioners can sometimes derive insightful structural
results that lead to efficient algorithms. In their comprehensive survey of determinis-
tic scheduling problems Lawler, Lenstra, Rinnooy Kan and Shmoys (1989) end their
paper with the following remarks: “The results in stochastic scheduling are scattered
and they have been obtained through a considerable and sometimes disheartening
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effort. In the words of Coffman, Hofri and Weiss (1989), there is great need for new
mathematical techniques useful for simplifying the derivation of results.”

Perhaps one of the most important successes in the area of stochastic scheduling in
the last twenty years has been the solution of the multiarmed bandit problem, which
can be described as follows:

The multiarmed bandit problem. There are K parallel projects, indexed k =
1,..., K. Project k can be in one of a finite number of states j, €.#;. At each instant
of discrete time ¢ = 0,1, ... one must work on a single project. If project k, which is
in state j,(¢) at time ¢, is engaged, then an immediate reward of Rjkk () Is earned.
Rewards are additive and are discounted in time by a discount factor 0 < g8 < 1. The
state j,(¢) changes to j (¢ + 1) according to a homogeneous Markov transition rule,
with transition matrix P* = (pf), < ,, while the states of the projects that have not
been engaged remain unchanged. The problem is to find a scheduling policy that
determines which project to engage at each time in order to maximize the total
expected discounted reward earned over an infinite horizon.

The problem has numerous applications and a rather vast literature (see Gittins
(1989) and the references therein). It was first solved by Gittins and Jones (1974), who
established that to each project state one could attach an index, such that the optimal
action at each time is to work on a project with largest current index. They also
proved that these optimal indices satisfy a stronger decomposition property: The
indices corresponding to the states of a given project only depend on characteristics
of that project (states, rewards and transition probabilities), and not on those of other
projects.

Since the original solution, which relied on an interchange argument, other proofs
were proposed: Whittle (1980) provided a proof based on dynamic programming,
which was subsequently simplified by Tsitsiklis (1986). Varaiya, Walrand and Buyukkoc
(1985), and Weiss (1988) derived different proofs based on interchange arguments.
Weber (1992) presented an intuitive proof. More recently, Tsitsiklis (1994) has
provided a proof based on a simple inductive argument, and Ishikida and Varaiya
(1994) have derived the result without making an explicit use of the interchange
argument.

The multiarmed bandit problem is a special case of a dynamic and stochastic job
scheduling problem. In this setting, a set of jobs, which are classified in a finite set .4
of classes, must be scheduled for service in the system. The goal is to optimize a
function of a performance measure by means of an admissible scheduling policy.

DEFINITION 1 (INDEXABLE PROBLEMS). We say that a dynamic and stochastic
scheduling problem is indexable if a policy of the following kind is optimal: to each
job type i we attach an index v,; at each decision epoch, work on a job with largest
current index.

In general the optimal indices vy, (as functions of the model parameters) could
depend on characteristics of the entire set .#" of job classes. Consider a partition of set
A into subsets %, for k= 1,... K. Job classes in .#, may be interpreted as
corresponding to an underlying project class k. In some cases, the optimal indices of
job classes in .#; depend only on characteristics of job classes in .#;, and not on the
entire set .#. Such a property is useful computationally, since it enables the problem
to be decomposed into smaller subproblems, for which the computation of the indices
can be done separately. As we have mentioned, the multiarmed bandit problem
exhibits this decomposition property, which motivates the following definition:

DEFINITION 2 (DECOMPOSABLE PROBLEMS).  An indexable problem is called decom-
posable if the indices of jobs corresponding to a project depend only on characteristics
of that project.
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TABLE 1
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Indexable Problems and their Performance Regions

System Criterion Indexability Performance region
Batch of jobs LC* Smith (1956): D® Queyranne (1993): D, P¢
Rothkopf (1966b) This paper: P
DC?  Rothkopf (1966a): D This paper P
Gittins & Jones (1974)
Batch of jobs LC Horn (1972). D This paper: EP?
with out-tree Meilijson & Weiss (1977)
prec. constraints DC Glazebrook (1976) This paper: EP
Multiclass M/G /1 LC Cox & Smith (1961) Coffman & Mitrani (1980): P
Gelenbe & Mitrani (1980): P
DC Harrison (1975a, 1975b) This paper: EP
Multiclass’ M/G/c  LC Federgruen & Groenevelt (1988b) Federgruen & Groenevelt (1988b)
Shanthikumar & Yao (1992) Shanthikumar & Yao (1992): P
Multiclass G /M /¢ LC Federguen & Groenevelt (1988a)  Federgruen & Groenevelt (1988a)
Shanthikumar & Yao (1992) Shanthikumar & Yao (1992): P
Mutliclass LC Ross & Yao (1989) Ross & Yao (1989): P
Jackson network ¢
Multiclass M/G /1 LC Klimov (1974) Tsoucas (1991); EP
with feedback DC Tcha & Pliska (1977) This paper: EP
Multiarmed bandits DC Gittins & Jones (1974) This paper: EP
Branching bandits LC Meilijson & Weiss (1977) This paper: EP
DC Weiss (1988) This paper: EP

“Linear cost

®Determunistic processing times

Polymatroid

“Discounted linear reward-cost

“Extended polymatroid

’Same service time distribution for all classes

éSame service time distribution and routing probabilities for all classes (can be node dependent)

In addition to the multiarmed bandit problem, a variety of dynamic and stochastic
scheduling problems has been solved in the last decades by indexing rules (see Table
1 for examples).

Faced with these results, one asks what is the underlying reason that these
nontrivial problems have very efficient solutions, both in theory and in practice. In
particular, what is the class of stochastic and dynamic scheduling problems that are
indexable? Under what conditions are indexable systems decomposable? But most impor-
tantly, is there a general way to address stochastic and dynamic scheduling problems that
will lead to a deeper understanding of their structural properties? This is the set of
questions that motivates the present work.

In the last decade the following approach has been proposed to address special
cases of these questions: In broad terms, researchers try to describe the feasible space
of a stochastic and dynamic scheduling problem as a polyhedron; then, the stochastic
and dynamic scheduling problem is translated into an optimization problem over the
corresponding polyhedron, which can then be attacked by traditional mathematical
programming methods. Coffman and Mitrani (1980) and Gelenbe and Mitrani (1980)
first showed using conservation laws that the performance region of a multiclass
queuc under the average cost criterion can be described as a polyhedron. Federgruen
and Groenevelt (1988a), (1988b) advanced the theory further by observing that in
certain special cases of multiclass queues, the polyhedron has a very special structure
(it is a polymatroid) that gives rise to very simple optimal policies (the ¢ rule). Their
results partially extend to some rather restricted multiclass queueing networks, in
which it is assumed that all job classes have the same routing probabilities, and the
same service requirements at each station of the network (see Ross and Yao (1989)).
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Shanthikumar and Yao (1992) generalized the theory further by observing that if a
system satisfies strong conservation laws, then the underlying performance region is
necessarily a polymatroid. They also proved that, when the cost is linear on the
performance, the optimal policy is a static priority rule (see Cobham (1954), and Cox
and Smith (1961)). Tsoucas (1991) derived the region of achievable performance in
the problem of scheduling a multiclass nonpreemptive M/G /1 queue with Bernoulli
feedback, introduced by Klimov (1974). Finally, Bertsimas, Paschalidis and Tsitsiklis
(1994a) generalize the ideas of conservation laws to general multiclass queueing
networks using potential function ideas. They find linear and nonlinear inequalities
that the feasible region satisfies. Optimization over this set of constraints gives
bounds on achievable performance.

Our goal in this paper is to propose a theory of conservation laws, and to establish
that the strong structural properties in the optimization of a class of stochastic and
dynamic scheduling problems, that include the multiarmed bandit problem and its
extensions, follow from corresponding strong structural properties of the underlying
polyhedra that characterize their regions of achievable performance.

By generalizing the work of Shanthikumar and Yao (1992) we show that if
performance measures in stochastic and dynamic scheduling problems satisfy general-
ized conservation laws, then the feasible space of achievable performance is a polyhe-
dron called an extended polymatroid. Optimization of a linear objective over an
extended polymatroid is solved by an adaptive greedy algorithm, which leads to an
optimal solution having an indexability property. Special cases of our theory are
summarized in Table 1. Consequences of our results include:

1. A characterization of indexable systems as systems that satisfy generalized
conservation laws.

2. Sufficient conditions for indexable systems to be decomposable.

3. A new, algebraic proof (based on the strong duality theory of linear program-
ming as opposed to dynamic programming formulations) of the decomposability
property of Gittins indices in multiarmed bandit problems.

4. An approach to sensitivity analysis of indexable systems, based on the well
understood sensitivity analysis of linear programming.

5. A new characterization of the indices of indexable systems as sums of dual
variables corresponding to a linear program over their region of achievable perfor-
mance.

6. An economic interpretation of the indices in the context of branching bandits
in terms of retirement options, thus generalizing the interpretation of Whittle (1980)
and Weber (1992) for the indices of the classical multiarmed bandit problem.

7. A new algorithm to compute the indices of indexable systems (in particular
Gittins indices), which is as fast as the fastest known algorithm (Varaiya, Walrand
and Buyukkoc (1985)).

8. The realization that Klimov’s algorithm for multiclass queues and Gittins’s
algorithm for multiarmed bandits are special cases of the same algorithm.

9. Closed formulae for the performance of the optimal policy. This also leads to
an understanding of the invariance of the indices with respect to some parameters of
the stochastic scheduling problem.

10. A closed formula for the maximum reward of the multiarmed bandit problem,
with a new proof of its submodularity.

11. An approach to formulate and solve several classical problems in stochastic
scheduling, and their variations, such as: discounted versus undiscounted cost crite-
rion, rewards versus taxes, discrete versus continuous time, linear versus nonlinear
performance objectives.

The paper is structured as follows: Section 2 introduces the main ideas of the
polyhedral approach to stochastic scheduling through a simple example: a two-armed
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bandit problem. Section 3 develops the theory of polyhedra (extended polymatroid)
that arise as the performance region of indexable scheduling problems. Section 4
presents a general polyhedral framework for formulating and solving indexable
scheduling problems as linear programs with special structure. Section 5 applies that
framework to the model of branching bandits, while Section 6 specializes this result
to several classical problems in stochastic scheduling, including the multiarmed bandit
problem. The final section contains some thoughts on the field of optimization of
stochastic systems.

2. Optimal dynamic scheduling of a two-armed bandit. This section introduces
the main ideas of the mathematical programming approach to stochastic scheduling,
as outlined in §1, through an example: a simple two-armed bandit problem.

Let us first describe the example problem. Although it may be regarded as a
two-armed bandit problem (see e.g. Gittins (1989)), we shall introduce and analyze it
as a scheduling problem in a multiclass queue, for consistency with the general
framework to be presented later. In the terminology of queueing theory, the problem
may be stated as the optimal dynamic scheduling of the closed queue in discrete time
with three job classes and two jobs shown in Figure 1. Initially one of the jobs is in
class 1 and the other in class 2. Jobs may change class after completing service,
according to Markovian transition probabilities. A class-2 job may thus either remain
in the same class, with probability p,,, or transfer to class 3, with probability
Py =1 —py. A class-3 job behaves analogously, as shown in Figure 1. The class 1
job, however, always remains in the same class. There is a discounted reward
structure associated with service completions: Each time a class-j job completes its
service, a reward r, is earned, discounted in time by a discount factor 0 < B < 1. The
problem is to find a scheduling policy that decides which job to serve at each time, in
order to maximize the expected present value of the rewards earned over an infinite
horizon.

Two natural requirements are imposed on the class of scheduling policies that may
be used. First, a policy must be nonanticipative, i.e., decisions may not be based on
future information on the evolution of the system. Second, a policy has to be
nonidling, i.e., the server never stops working while there are jobs in the system. We
shall refer to the class % of policies that satisfy these two conditions as the class of
admissible policies. By defining the indicator

I(t) = 1, ifaclass+ job is serviced at time ¢;
! 0, otherwise,

Class 1 Class 2 Class 3

(8]

I— (—_—

Pas P32

FIGURE 1. A two-armed bandit.

il
[y

P11
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we can write this optimal dynamic scheduling problem as

(SP) Z = max{Eu

x 3
Y erlj(t)ﬁ']: ue 7/}
t=0y=1

2.1. Performance measures. The first step of the approach involves expressing
the objective to be optimized as a function of suitably defined performance measures.
For the above problem, a natural performance measure is the total expected dis-
counted number of service completions for each job class,

M=3L§“Qw}ﬁw=Lza

As scheduling policies range over the class of admissible policies, the correspond-
ing performance vectors span the region of achievable performance

A={(X, A, 08): uew)

The problem of finding an optimal performance vector can now be written as the
mathematical program

(MP) Z = max r A + 1A, + 13,
subject to
(Ala )‘2’ A}) € A

2.2. Conservation laws. We shall construct a complete polyhedral description of
performance region A, by identifying conservation laws satisfied by the system and
expressing them as linear constraints on performance vectors. First, since at each
time exactly one job completes its service, it follows that the total expected dis-
counted number of completed jobs is the same under any admissible scheduling
policy. This conservation law may be written as

(1) )\’1‘+)\’2‘+/\'3‘=-1——-E—ﬁ, foru e #.

We shall outline next how to construct a family of conservation laws associated
with subsets of job classes. Consider, for example, the subset {2} corresponding to
class-2 jobs. Let u, be a scheduling policy that gives priority to class-2 jobs over jobs
in other classes (i.c., the job in service must be a class-2 job whenever there is one
present). Under such a policy, the conservation law

1 1
2 A2 = + — )2
2) 2 1-Bpxn PraT= Bpy

holds. Equation (2) expresses the intuitive fact that the total expected discounted
number of class-2 jobs completed, A42, can be decomposed into two terms: A first
constant term, 1/(1 — Bp,,), that accounts for the class-2 jobs completed until the
job that was initially in class 2 transfers for the first time to class 3; and a second
term, that accounts for the class-2 jobs completed afterwards, using the following
accounting argument: After a class 3 job completes its service at time ¢, the expected
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discounted number of successive class-2 job completions is

ﬁ‘“p32/(1 - Bpxn).

It should be intuitively clear that, under other admissible policies, the right-hand
side of Eq. (2) overestimates the expected discounted number of successive class-2 job
completions, i.e.,

1 1
Ay € e + — A4, 1 e¥.
2 1 - Bpy Bpx 1-B8py™3 oru

Using conservation law (1), we may rewrite the previous inequality as

P3 ) 1 1

A > forue%,
- Bpx

i (1ep ET-F T TP’

with equality holding under any policy u that gives priority to class-2 jobs.

By applying a similar argument to policies that give priority to other subsets of job
classes, we may derive corresponding conservation laws and linear constraints on
performance vectors.

23.  Linear programming formulation. As will be shown later, the linear con-
straints obtained through the procedure outlined above represent a complete polyhe-
dral description of performance region A. Proceeding in this way, we obtain the
following explicit linear programming formulation of problem (MP):

Z =max rA raA; + r3A;
subject to A, + As > 0
D3 1 1
A+ 1+ Ay 2 -
! ( ﬁll“ﬂpzz) 3=1-8 1-Bpyn
p 1
M +(1+B11_§P33)A2 = 1-8
A > 0
A, > 0
As > 0
Ayt Ay + A = Ti—ﬂ,

where each inequality constraint holds with equality under a scheduling policy that
gives priority to the corresponding subset of job classes.

It will be shown in §5 that the feasible region of linear program (MP), which is
called an extended contra-polymatroid, has particular structure, that will be examined
in the next section.

2.4. Optimal solution. 'We will show in the next section that the extreme points of
the polyhedron that is the feasible space of linear program (MP) are the performance
vectors achieved under static-priority scheduling policies (i.e., the service priority of a
class remains constant through time). Since the optimal value of a linear program is
attained by some extreme point in its feasible region, it follows that static-priority
policies are optimal for this scheduling problem. In the next section we will also see
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Az A

A1

FIGURE 2. An extended contra-polymatroidal performance region in dimension three (priority
policies are associated with its extreme points, with job classes ranked by increasing priority).

how to identify the optimal extreme point, and its associated optimal static-priority
policy, by running a one-pass algorithm.

Figure 2 depicts an extended polymatroid in dimension three, representing the
performance region of a 3-class bandit problem. Notice that it has 3!= 6 extreme
points, corresponding to all static-priority policies.

3. Extended polymatreids. Extended polymatroids are polyhedra whose role in
the field of stochastic scheduling is analogous to that played by classical polymatroids
(see Edmonds (1970)) in combinatorial optimization. Polymatroids arise as the convex
hull of feasible solutions in combinatorial optimization problems solved by a greedy
algorithm, such as that of finding the minimum spanning tree in a graph. Similarly,
extended polymatroids appear as the convex hull of performance vectors achievable
under admissible scheduling policies (i.e., as the performance region) in stochastic
scheduling problems solved by priority-index policies, including multiarmed bandit
problems. Problems such as finding a minimum spanning tree or scheduling optimally
a multiarmed bandit can thus be formulated as linear programs over polymatroids or
extended polymatroids, respectively. These linear programs possess strong structural
and algorithmic properties, which explain the optimality of greedy-like solution
schemes for the problems they represent. They further provide insight on how to
solve variations on the original problems, such as incorporating a nonlinear objective
function, or imposing side constraints.

In the remainder of this section we establish the notation to be used, and present
the formal definition of extended polymatroid. Section 3.1 develops the theory of
linear programs over such polyhedra.
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Let # = {1,..., n} be a finite set. Let x denote a real n-vector, with components
x,, for i €#.For § C N, let §¢ =#\'S, and let |S| denote the cardinality of S. Let x;
be the subvector of x corresponding to components in S, ie., xg = (x,),cs- Let 27
denote the class of all subsets of .#. Let b: 27 —> R, be a nonnegative set function
that satisfies (@) = 0. Let 4 = (A%), ., s, be a matrix that satisfies

A5 >0, forie€ Sand S .

Given a permutation 7 = (i, ..., m,) of #, and a vector x = (x,...,x,) we write
X, =(x,,...,%, ), and

b= (b({my...,m}o b({moy, m}), b({m})) -

Let A_ be the upper triangular submatrix of A4 given by

A{‘:’ll vvvv ‘"u) e A(‘”ﬂ'"l_v 1 s ﬂzx) A(:'"l '''' ‘n'n)
A = . . . .
”"" 0 vee A(“"'ﬂ,:’—_ll » Ty} A(:nn—l >y}
0 e 0 A(w”,:-)

Let v(sr) denote the unique solution of triangular system

A(;Tllv- ,ﬂ'”)xﬂl 4o 4 A(’rrﬂ,,l:l”‘ﬂ")xﬂ,.-l + A{ﬂ‘"”p ,ff")xﬂ_" = b({7r1, e, ‘71'”})
3) A(;::hﬂn)xﬂ”‘l + A("T‘”"n‘-h ﬂ")x’ﬂ'" = b({Trn—l’ 7,-"})
ATx,, = blmD.

Consider now the following polyhedra associated with matrix 4 and set function b:

P(A,b) = {x e Nt Y Alx, = b(S),for S crand Y, A'x, = b(/V)} and
€8 ie

P(A,b) = {x et Y A5k, <b(S),for S C#and ¥ Alx, = b(/l/)}.
1ES eV

Polyhedra £.(A, b) and (A, b) possess, under the following consistency assump-
tion, strong structural and algorithmic properties, that generalize those of classical
polymatroids.

ASSUMPTION 1. For every permutation w of #, m) € (A, b).

DerINITION 3 (Extended Polymatroid). We say that polyhedron (A4, b) is an
extended polymatroid with ground set .#, if Assumption 1 holds.

If Assumption 1 holds for polyhedron #.(A,b), we say that #.(A,b) is an
extended contra-polymatroid.

ReEMARK. Extended polymatroids were introduced by Tsoucas (1991), who charac-
terized the region of achievable performance in Klimov’s problem (see Klimov (1974))
as a polyhedron with special structure, not previously identified in the literature. He
established that the optimality of static-priority policies under linear performance
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objectives, first proven by Klimov (1974) using dynamic programming arguments,
follows from structural properties of such polyhedra. Bhattacharya, Georgiadis and
Tsoucas (1992) called this polyhedron an extended polymatroid, and further developed
its properties.

3.1.  Linear programming over extended polymatroids. In this section we develop
structural properties of linear programs over extended polymatroids. First, we present
a new duality proof that such a linear program is solved by a one-pass adaptive greedy
algorithm. It is then shown that its optimal solutions are characterized by certain
allocation indices, defined as sums of optimal dual variables. Finally, we identify a
condition under which these indices exhibit a decomposition property, which simpli-
fies their computation. The significance of these results in the field of stochastic
scheduling is that they explain corresponding properties of indexable scheduling
problems, as the next section will demonstrate.

Let us thus consider the problem of maximizing a given linear reward objective
L, e 1x, over extended contra-polymatroid 2.(A, b),

(LP) Z =max ), rzx,

ie. t
subject to ) Afx; = b(S), forS ¥
€8
Y Alx; = b(r)
ey

x, >0, forieu s

Input: (r, A).

Output: (7, y, ¥), where 7 = (m,,...,7,) is a permutation of .#, j = (is)sg/ and
Y= (Ypsees V)

Step 0. Set S| =43 set 751 = max{:{%: i€ S,};

pick 7, € argmax{%: i€ S1>;

i

set v, =y
Step k. For k=2,...,n:

r, — T*1AS§S
set S; = S,y \ {m,_,}; set §% = max {I_ZS*“‘ i€ Sk};
13

k=1 45,55
ri— X0 Ay J'iES }
e RS

pick 7, € argmax{ 5

set ¥y, = v, _ + 3%
Step n. For § c.#% set

=0, ifSe(s,...,S).

FIGURE 3. Adaptive greedy algorithm «Z.
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Since .#.(A, b) is a nonempty bounded polyhedron, linear program (LP,) must have a
finite optimal solution. Therefore, its dual program—by strong linear programming
duality—will have the same optimum value Z. We shall have a dual variable y* for
every S C.#. The dual program of (LP,) is

(LD,) Z=min Y, b(8)y’
scA

subject to Y AyS>r, fories
S: A 283

y$ <0, forScws
y* unrestricted.

32. Adaptive greedy algorithm. We present next a one-pass adaptive greedy
algorithm for solving linear program (LP,) and its dual (LD,). The input data for the
algorithm consists of reward vector r = (r), <., and an oracle (see Grotschel, Lovész
and Schrijver (1988)) that produces the value 47 when called with input (i, ). Its
output includes a ranking permutation 7 of ground set .#, an optimal dual solution y,
and optimal allocation indices {y},, that, as will be seen, characterize optimal
solutions to (LP,).

As shown in Figure 3, the algorithm constructs in n steps a vector y = ( ¥ s
which will later be proved to be an optimal solution to program (LD,). This dual
solution has at most n nonzero components, which correspond to a nested (laminar)
family (see e.g. Schrijver (1986))

S, c-cS,Cc§ =4

The algorithm identifies in an adaptive greedy manner a permutation 7 = (7, . ., m,)
of .# such that, defining S, = {m,...,m,} for k =1,..., n, the unique solution of
the triangular system

Siy,S —
A7y =r

A;S;l lySI 4 e +A~§ru-1 ysn—l =r

n- n=1

Sy Sp-1ySac Sy vSn =
Az oA e Ayt o+ Ayt =ry

satisfies
7S¢ <0, fork=2,...,n.

A corresponding primal solution is obtained by complementary slackness, as the
solution v(s) of system (3). We present next an optimality proof, based on linear
programming duality.

PROPOSITION 1 (OPTIMALITY OF ADAPTIVE GREEDY ALGORITHM). Let (, ¥, v) be an
output of algorithm /<. Then v(w) and y are an optimal primal-dual pair for linear
programs (LP,) and (LD,).

PrOOF. We shall show that o(7) and y are primal and dual feasible solutions,
respectively, and that they satisfy complementary slackness. We shall first show by
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induction that y is dual feasible. By definition of y° in &%, it follows that
r,—ASySi <0, fories,.

Since §, C §;, we must have 352 < 0.
Similarly, for k = 2,..., n, we have, by definition of §5%,

k
r,— Y, AY55 <0, fories,,
J=1

and since S,,; C S, it follows that y%+ < 0. Therefore 75 <0, for j =2,...,n,
and by definition of y, it follows that 75 < 0, for § c.#.
We also have, by construction,

k
Y A3 =2 A3 =r,, fork=1,..,n.

S§:./28=3m, j=1

Therefore y is a dual feasible solution.

Now, by definition of extended contra-polymatroid, v(w) is a primal feasible
solution. Let X = v(w). Let us show that ¥ and y satisfy complementary slackness.
Assume y° # 0 for some S C.# Then, by construction it must be the case that
§ =38, ={m,...,m)}, for some k € .#. Now, some X is the solution of system (3), it
follows that

T ASE, = ¥ Amemiz, = b(s).
1=k

€8

Therefore, by strong linear programming duality, v(7) and y are an optimal primal-
dual pair, which completes the proof. o

REMARKS.

1. The result that adaptive greedy algorithm & solves program (LP,) was first
established by Tsoucas (1991), who provided a direct optimality proof—not involving
duality theory. He showed that when the underlying extended polymatroid corre-
sponds to the performance region in Klimov’s (1974) queueing model, algorithm /&
yields the classical Klimov’s algorithm for computing the optimal priority scheduling
policy.

2. The running time of algorithm ¥ is polynomial in the following sense: Given
its input (r, 4) the algorithm performs O(n®) multiplications and O(n?) pairwise
comparisons. The number of required calls to the oracle that produces the Af’s is
O(n?). Therefore, %% is an oracle-polynomial-time algorithm (see Grotschel et al.
(1988)). In most applications the oracle that returns the A45’s runs in polynomial time
in the size of the model data, in which case the algorithm is polynomial in the usual
sense.

3. Recently, Bertsimas and Teo (1994) have developed a primal-dual approxima-
tion algorithm for linear and integer programming problems of the covering type.
When specialized to the case of extended polymatroids, this algorithm coincides with
adaptive greedy algorithm /2.

The optimality of adaptive greedy algorithm allows us to characterize explicitly the
vertices of an extended polymatroid.
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THEOREM 1 (CHARACTERIZATION OF EXTREME POINTS). The set of extreme points of
extended contra-polymatroid #.(A, b) is

{v(m): 7 is a permutation of 4} .

PrOOF. First, it is easy to see that for any permutation 7 of .#, v(w) is an extreme
point of & (A, b). Second, we shall show that any extreme point of ZA, b) is of the
form v(7) for some permutation 7. This follows from the well known result that
every extreme point of a polyhedron is the unique maximizer of some linear objective,
and the fact that algorithm &% produces an optimal primal solution of such form.

m

ReEMARK. Edmonds (1970) proved the classical result that the greedy algorithm
solves the linear programming problem over a polyhedron for every linear objective
function if and only if the polyhedron is a polymatroid. Now, in the case that AS =1,
for i € S and § C.#, it is easy to see that adaptive greedy algorithm % reduces
indeed to the classical greedy algorithm that sorts the r,’s in nonincreasing order.
Since we know that algorithm &% solves problem (LP,) optimally it follows that, in
this special case, #.(A4,b) is indeed a polymatroid, and therefore function b is
submodular. Extended polymatroids are therefore natural generalizations of polyma-
troids, and adaptive greedy algorithm &% is a natural extension of the greedy
algorithm.

3.3. Indexability. The optimality of adaptive greedy algorithm % leads natu-
rally to the definition of certain allocation indices, that characterize the optimal
solutions of a linear programs over an extended polymatroid. We will show later that
these allocation indices correspond to the well-known Gittins indices in stochastic
scheduling problems.

DEFINITION 4 (ALLOCATION INDICES). Let ¥ be the optimal dual solution produced
by adaptive greedy algorithm &%. Let

y,= ) y, forieu.
S:. 42820
We say that vy,,..., v, are the allocation indices of linear program (LP,).

REMARKS. 1. If permutation 7 is produced by algorithm &/, then
(4) Yr, =ylme T 4 pHlme T for i e

2. Notice that the allocation indices of linear program (LP,) depend only on
(r, A) (not on the right-hand side b).
3. Notice that in order for the allocation indices of linear program (LP,) to be

well defined, the optimal dual solution y computed by algorithm &% must be
uniquely determined by its input (r, A).

Consistency of the definition of allocation indices. We address next the issue of
whether the allocation indices y,,..., ¥, of linear program (LP,) are indeed uniquely
determined by the input (r, 4) of algorithm »%. This question arises because ties
may occur in some of the maximizations performed by the algorithm. In the presence
of ties, the permutation 7 produced by the algorithm is not uniquely determined by
its input (r, A): it clearly depends on the way ties are broken. We shall establish next
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that the optimal dual solution produced by the algorithm remains indeed invariant
under different tie-breaking rules, and therefore our definition of allocation indices
of linear program (LP,) is consistent. We shall also characterize the structure of the
permu produced by algorithm %

In order to prove that the dual solution produced by algorithm &% is uniquely
determined by its input, we introduce next algorithm &&’, which is simply an
unambigous version of the former—its output is uniquely determined by its input.
Algorithm &/&’, shown in Figure 4, produces a partition P = {P,,..., P, } of the
ground set, in addition to a dual vector y. Each subset in that partition groups
together elements of the ground set that would attain the same maximum in the
maximizations performed by algorithm &%, thus eliminating the ambiguity due to
different tie-breaking rules.

The next result, which is easily seen to hold by induction (see Nifio-Mora (1995)),
shows the relation between the outputs of both algorithms. It establishes that the
dual solution returned by adaptive greedy &% is invariant under tie-breaking rules. It
also characterizes the structure of the permutations that can be returned by algorithm
HE.

PROPOSITION 2. Let (m,3,y) and (P, §) be outputs of algorithms %% and ¥/%"',
respectively, corresponding to the same input (r, A). Then

@y =7y

(b) Permutation 7 satisfies

(5) Pk={77'11’1u VPt Mpu L upgts fork=1,...,m.

Input: (r, A).

Output: (P, y), where P ={P,..., P,} is a partition of .# and § = (§5);_ , Step 1.
Set k= 1;set U =4

set pUi = max{AL'_;: i€ Ul} and P, = argmax{—Ar%y.: i€ U,}.

t t

Step k. While U, # P, do:

begin
Set k==k + 1;set Uy = U\ P,_y;
7, — TkZ1 AU Y
N t j=1 3 L.
set y*—max{—T.teUk and
r - TE-1 450,
P, = argmax {—.JAUI‘—'X_ i€ Uk>.

end {while}

Step m. Set m = k;
for § € 4" set

55 =0, iSe(U,....U,).

FIGURE 4. Algonthm &': unambiguous version of adaptive greedy algorithm /2.
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REMARK. Proposition 2(b) characterizes the structure of the ranking permutations
7 that can be produced by adaptive greedy algorithm &&. Elements = € P, in
identity (5) would tie in the maximizations performed by algorithm &% for determin-
ing permutation 7 and can, therefore, be rearranged in any order, maintaining the
optimality of primal solution v(s).

Optimality conditions. 'We present next several equivalent optimality conditions for
a linear program over an extended polymatroid, including one based on ranking its
indices. Let _= {x € N: x < 0}. Let y,,..., 7, be the allocation indices of program
(LP). Let T be the following n X n upper triangular matrix:

1 1 ves 1
T=|- - - :
00 - 1

PROPOSITION 3 (EQUIVALENT OPTIMALITY CONDITIONS).  The following statements are
equivalent:

(a) Permutation m satisfies (5);

(b) permutation 7 is produced by algorithm ¥/ ;

() r,A;' € R x M"Y, and then the allocation indices are given by vy, =r, A7'T;

DYy < Vp £ L Vo

n=1

ProOE. (a) = (b): This is the result in Proposition 2(b).
(b) = (c): It is clear, by construction in &%, that

(6) (S)(ﬂl‘“ “n-")’ R S)(ﬂu—l"ﬂn), }_)(ﬂ"}) = r‘lTA;l'
Now, in the proof of Proposition 1 we showed that
35 <0, forS c.,

which together with (6) implies r, A;' € R X R*~L Furthermore, by (4) we have

Y, = (_)';(va »"u)’ e y(’”u—ly‘“’n)’ )';("u))T’

and by (6) it follows that y, =r, A;'T.
(c) = (d): By (c) we have

A A 'y,,“_l)T‘1 =r, Al eR xR,
whence the result follows.

(d) = (a): By construction of § in algorithm &%, the fact that y = and the
definition of allocation indices, it follows that

y, =y + - +3%, forie U,and k=1,...,m.

where the Ugs are as constructed in algorithm &%'. Also, it is easy to see that
yY% < 0, for j > 2. These two facts imply that 7 must satisfy (5), which completes the
proof. o

Combining the result that algorithm &% solves linear program (LP,) optimally with
the equivalent conditions in Proposition 3, we obtain the sufficient optimality condi-
tions presented next.
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THEOREM 2 (SUFFICIENT OPTIMALITY CONDITIONS AND INDEXABILITY. Assume that
any of the conditions (a)-(d) of Proposition 3 holds. Then v(w) solves linear program
(LP.) optimally.

The following results follow from our previous analysis:

1. Indexability: Optimality condition (d) of Proposition 3 shows that any permuta-
tion that sorts the allocation indices of linear program (LP,) provides a corresponding
optimal solution. Condition (d) therefore shows that this class of linear programs has
an indexability property.

2. Sensitivity analysis: Optimality condition (c) of Proposition 3 is specially well
suited for performing sensitivity analysis. Consider the following question: given a
permutation 7 of .#, for what vectors r and matrices 4 does v() solve problem
(LP,) optimally? We know that v(sr) is optimal for r and A that satisfy the condition

r, A7t e R x (el

We may also ask: For which permutations = is it guaranteed that v(#r) is optimal? By
Proposition 3(d), we know that v(sr) is optimal for permutations = that satisfy

‘y‘”'n = y‘”u—l == 7""1’

thus providing an O(n log n) optimality test for . Glazebrook (1994) has recently
applied these polyhedral results to provide a range of index-based suboptimality
bounds for general policies in a variety of stochastic scheduling problems (see also
Glazebrook (1987)).

3. Closed formulae for allocation indices: Proposition 3(c) provides a closed
formula for the vector of allocation indices. It shows that the indices are piecewise
linear functions of the reward vector.

4. Optimal objective value: The optimal objective value, Z, is given by:

(7) Z=r,x

mTTrT

Il

rAz'b,

YT b,

b({my,...,m}) — b({7r2,...,77'n})

b({m,1, m}) — b({m})
b({m))

3.4, Index decomposition. We show in this section that the allocation indices of
linear program (LP,) possess, under a certain assumption, a strong decomposition
property. In that case, the indices can be computed by solving a number of smaller
subproblems, thus reducing the amount of computations required. We will show later
that this property explains an analogous decomposition property of the optimal
priority-indices in some stochastic scheduling problems, including multiarmed ban-
dits.

In this setting the ground set .#” is partitioned into subsets .#,...,#. Let A*
denote the submatrix of A corresponding to subsets of .#;, i.e., A* = (49),c , se 1
Let r =(r),c , and r* = (r),e s, for k=1,..., K. Let y be the vector of alloca-

= (yw,’ YWZ""’ 7#,,)
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tion indices of linear program (LP,), and let y* be the index vector produced by
adaptive greedy algorithm #% when fed with input (r¥, 4%).
The required decomposition assumption on the parameters of matrix A is:

ASSUMPTION 2.
AS =A% forie SNA, andS cA.

We show next that, under Assumption 2, vector of allocation indices y extends
vectors v1,..., vX over their respective ranges.

THEOREM 3 (INDEX DECOMPOSITION).  If Assumption 2 holds, then
y,=7vF, forie s, andk=1,...,K.

PrOOF. Let us define b*: 27x - R, by b*(S) = b(S), for § C.4;. Since #,(A4, b)
is an extended contra-polymatroid, it is easily seen that .97’C(A", b*) is also an
extended contra-polymatroid—with ground set #,. For k=1,..., K, let us write
x* = (xP),c 4, and let (LP,) be the linear program

(LP,) max{ Y rxkxk eﬂ&A",b")}.

€./

By definition, the allocation indices of linear program (LP,) are obtained by running
algorithm % with input (r¥, 4*), and are therefore given by vector y*. Let us define

(8) g =vr fories, andk=1,...,K.
Let us renumber, for simplicity, the elements of .#, so that
(9) 8n = 8n-1 = Sgl'

Let 77 = (1,..., n). Permutation 7 of .#" induces permutations 7* of .#;, for k =
1, ..., K, that satisfy

k k
Vm‘m < L Vah-

'

Hence, by Proposition 3 it follows that

v = rk(4%) T, fork=1,...,K

or, equivalently,

(10)
T4, 0 0
o)) O A = (P k),
0 0 ToUk

where T}, is an |#;| X |#,| matrix with the same structure asmatrix 7, fork = 1,..., K.
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On the other hand, we have

1 -1 0 0 0 0
0 1 -1 0 0 O
T4, = A,

o 0 0 - 0 1 -1

0 0 0 0 0 1

A(ll ,,,,, n} A{xl ; W} o Agll,_.l..,u—l) A(nl ..... ny _ A{nl ,,,,, n—1}

- 0 A{’;»_—'ll ) Ag,-l,u} — 4
0 “ee 0 A(’;z)

Now, notice that if i € #, j € #\#; and i > j then, by Assumption 2 it follows that
(11) AU o) = AU O = UL M UL
Hence, by (8) and (11) it follows that system (10) can be written equivalently as
(12) g, T4, =r,_.
Now, (9) and (12) imply that
reA7'8. T = (81,8 = 81>-- > 8y~ 8u-1) € R X R,

and by Proposition 3 it follows that the allocation indices of linear program (LP,)
satisfy y, = r, A7'T. Therefore, by (12),

gi=v, fories,

which completes the proof. o
A useful consequence of Theorems 2 and 3 is the following:

COROLLARY 1. Under the assumptions of Theorem 3, an optimal solution of linear
program (LP,) can be computed by running algorithm &% with inputs (r*, A*), for
k=1,...,K

REMARK. It is important to emphasize that the index decomposition property is
much stronger that the indexability property. We will see later in the context of
stochastic scheduling that the classical multiarmed bandit problem exhibits the index
decomposition property. This condition is not satisfied in general, however, by the
optimal priority-indices in Klimov’s problem (see Klimov (1974)).

We have focused our discussion in properties of linear programs over extended
contra-polymatroids. The properties of linear programs over extended polymatroids
are analogous. In Table 2 we show how to solve linear program (LP)—that minimizes
a cost function hx over extended polymatroid (A4, b)—by running algorithm &&
with input (h, A), this obtaining corresponding allocation indices that characterize
the optimal solution.
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TABLE 2
Linear Programmung Over Extended Polymatroids

Problem Allocation Indices Optimal Solution
. v
(LP)min, ¢ p(a, pyix (h,A) — vy Yo, < S Vm,
%, =A;b,
%2
(LP)max, ¢ o 4, 5% r, A -y Yo, S S Yy
X, =A;'b,

4. A polyhedral approach to indexable scheduling problems. In this section we
develop a framework for formulating and solving stochastic scheduling problems
solved by priority-index rules.

Section 4.1 introduces a concept of conservation laws that generalizes other
definitions used in the literature. We show that the performance region correspond-
ing to a scheduling problem that satisfies these laws is necessarily a polyhedron with
special structure: an extended polymatroid. The vertices of the performance region
are shown to be achieved by static-priority scheduling policies.

Section 4.2 shows how to formulate the problem of optimizing a linear performance
objective, in a system that satisfies generalized conservation laws, as a linear program
over an extended polymatroid, and how to obtain an optimal scheduling policy from
the solution the formulation. We establish the optimality of priority-index rules and
we present as assumption under which the optimal indices satisfy a decomposition
property, which simplifies their computation.

4.1. Generalized conservation laws. The wide variety of stochastic scheduling
problems solved optimally by priority-index rules leads us naturally to consider the
question: What physical properties of the system account for that indexability prop-
erty? We provide in this section an answer to this question, by introducing and
applying a general concept of conservation laws. We thus show that the performance
region corresponding to a performance measure that satisfies such laws is necessarily
an extended polymatroid, whose vertices are achievable under static-priority schedul-
ing policies. As will be shown in the next section, the indexability property of linear
programs over extended polymatroids translates into the optimality of priority-index
policies in the scheduling problems that satisfy those laws.

Consider a general dynamic and stochastic multiclass queueing system. There are n
job classes, which we label i € #' = {1,..., n}. Jobs have to be scheduled for service
in the system under an admissible scheduling policy. Let % denote the class of
admissible scheduling policies. Let x! be a performance measure of class-i jobs
under scheduling policy u. We assume that x;' is an expectation. Let x* denote the
corresponding performance vector. Let x™ be the performance vector corresponding
to a static-priority policy (i.e., the service priority of a job depends only on its class
and does not change over time) that assigns priorities to the job classes according to
permutation 7 = (ar,,..., m,) of #, where class-7, has the highest priority.

DEFINITION 5 (GENERALIZED CONSERVATION LAWS). Performance vector x* is said
to satisfy generalized conservation laws if there exist a set function b:2’ — %, and a
matrix A = (A¥), ., s, that satisfies 47 > 0, for § C.#; such that:

(a)

(13) b(8) = Y A}x], forallw:{m,..., w5} =5 and S crs.

tES
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(b) For every admissible policy u € %,

(14) Y ASx = b(S), forall S cr and Y A/x! = b(A),

€S ie
or respectively,

(15) L Ax! <b(S), forall S cv and Y, Alx! = b(#).

i
1§ =2

ReEMARKs. 1. In words, a performance vector is said to satisfy generalized
conservation laws if there exist weights A7 such that the total weighted performance
over all job classes is invariant under any admissible policy, and the minimum (or
maximal) weighted performance over job classes in any subset § c.# is achieved by
any static-priority policy that gives priority to all other classes (in S¢) over classes
in S.

2. Shanthikumar and Yao (1992) formalized a definition of strong conservation
laws for performance measures in general multiclass queues, that implies a polyma-
troidal structure in the performance space. These laws correspond to the special case
that all weights are 4% = 1 in Definition 5.

The connection between generalized conservation laws and extended polymatroids
is given by the following theorem:

THEOREM 4 (PERFORMANCE REGION CHARACTERIZATION).  Assume that performance
vector x" satisfies generalized conservation laws (13) and (14) (resp. (13) and (15)). Then

(a) The performance vectors corresponding to static-priority policies are the vertices of
Z(A, b) (resp. (A, b)), and x™ = u(m), for every permutation w of ¥

(b) The performance region is the extended contra-polymatroid P(A, b) (resp. the
extended polymatroid P(A, b)).

PrROOF. We shall prove the theorem in the case that x“ satisfies generalized
conservation laws (3) and (14). The other case ((13) and (15)) is analogous.

(a) By (13) it follows that x™ = v(w). By Theorem 1 the result follows.

(b) Let # = {x": u € #} be the performance region. Let 92°(A4, b) be the set of
extreme points of #,(A, b). By (14) it follows that & C.#,(4, b). By (a), (A4, b) C
X. Hence, since £ is a convex set (% contains randomized policies) we have

#(A4,b) = conv(#,(A,b)) C X,

where conv(-) denotes the convex hull operator. Hence & =.#,(A, b), which com-
pletes the proof. ©

Consider the problem of designing an admissible policy that achieves a given
performance vector x. It easily follows from Theorem 4 and Carathéodory theorem
(see e.g. Bazaraa and Shetty (1979)) that any given performance vector x can be
achieved by a randomization of at most n static-priority rules.

4.2. Optimization over systems that satisfy conservation laws: Indexability. Let x*
be a performance vector for a multiclass queueing system that satisfies generalized
conservation laws (13) and (14). Suppose that we want to find an admissible policy u
that maximizes a linear reward function ¥, ,r.x/. This optimal scheduling control
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problem can be expressed as

(LPy,) max{ Y rxtiue ?/}

ie V'

By Theorem 4, problem (LP, ) can be translated into the linear program

(LP,) max{ Y rix,:xeg’c(A,b)>.
ie

The strong structural properties of extended polymatroids lead to strong structural
properties in the control problem. Suppose that to each job class-i we attach an
index, vy,. A policy that selects for service at each decision epoch a job of currently
largest index will be referred to as a priority-index policy. Let yy,...,v, be the
allocation indices of linear program (LP,), obtained by running adaptive-greedy
algorithm with input (r, 4), as described in §3. As a direct consequence of the results
of §3.1 we obtain that control problem (LP,) is solved by an index policy, with
optimal priority indices given by y,,..., y,.

THEOREM 5 (INDEXABILITY UNDER GENERALIZED CONSERVATION LAWS). (a) Let
() be an optimal solution of linear program (LP,); then the static-priority policy that
assigns priorities to job classes according to permutation  (class , has highest priority)
solves problem (LP,,) optimally;

(b) A policy that selects at each decision epoch a job of currently largest allocation
index soluves problem (LPy) optimally.

4.3. Index decomposition. A stronger index decomposition property holds under
certain conditions. Assume .}, ...,#; is a given partition of the set of job classes .#.
Job classes in .#, may be interpreted as corresponding to a class-k project. Assume
also that submatrix 4* = (A4%),., s, of A (as a function on the parameters of
the system) depends only on characteristics of job classes in .#, (i.e., of project
class-k). If Assumption 2 holds, i.e.,

AS=A5"% forie SN, and S CA,

then the index decomposition theorem for extended polymatroids (Theorem 3)
applies, and therefore

v, = y,", fori € 4,

where the y/(r*, A*)Ys, for i € 4, are the indices obtained by algorithm &€ with
input (r*, 4%), and r* = (r,);c ,.. Combining this result with Theorem 5 we obtain:

THEOREM 6 (INDEX DECOMPOSITION FOR MULTICLASS QUEUEING SYSTEMS). The
allocation indices corresponding to job classes in #;, only depend on characteristics of
project class-k.

The previous theorem identifies a sufficient condition for the indices of an
indexable system to have a strong decomposition property. Therefore, systems that in
addition to generalized conservation laws further satisfy Assumption 2 are decompos-
able. For such systems the solution of optimal scheduling control problem (LP, ) can
be obtained by solving K smaller independent subproblems using algorithm «&/%.
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An example of a decomposable system is the multiclass-M/G/1 queue with

performance measure
NU

16 Xt =—, ied,
(16) ! M
where N is the time average number of class-i jobs (with mean processing time
1/u,;) in the system under scheduling policy u. Given a holding cost ¢; per unit time
for each job class-i, the goal is to assign the jobs to the server according to a
nonanticipative, nonidling and nonpreemptive scheduling policy in order to minimize
time average holding cost:

min ) ¢,N*= 3} (c, p)x}.
¥ yewn e

Gelenbe and Mitrani (1980) first showed that performance measure x* given by (16)
satisfies the following conservation laws:

(17) Y x“ > b(S), forS c,
€5
2 xf = b(#),
ieV

with equality in (17) if policy u gives priority to jobs with classes in S. Assumption 2
clearly holds in this case, since all 45 = 1, for i € § and S C.#. This is the reason
that the optimal index for each job class depends only on characteristics of that job
class: the allocation indices are given by y, = ¢, u,, thus explaining the optimality of
the cu rule from a linear programming perspective.

Another well known example of decomposable system is the multiarmed bandit
problem. We will see later that in this case the allocation indices reduce indeed to the
original Gittins indices. Furthermore, Theorem 6 explains the fact that Gittins indices
corresponding to the states of project k£ only depend on characteristics of that
project.

Let us consider briefly the problem of optimizing a nonlinear cost function on the
performance vector. Analogously as what we did in the linear rewards case, the
optimal scheduling control problem in the case of a nonlinear reward function can be
translated into a nonlinear program whose feasible region is an extended polyma-
troid. See Bhattacharya et al. (1991) for a discussion of algorithmic methods for
solving separable convex, min-max, lexicographic and semi-separable convex opti-
mization problems over an extended polymatroid.

5. Branching bandit problems. In this section we apply the framework devel-
oped in §4 to formulate and solve in a unifying way a variety of stochastic scheduling
problems whose optimal policies are known to be of priority-index type. These
include the classical multiarmed bandit problem (see e.g. Gittins (1989)), Klimov’s
problem (see Klimov (1974)), and the minimum weighted flow time problem in
deterministic scheduling (see Smith (1956)). These and other indexable scheduling
problems correspond to special cases of the branching bandit problem (see Meilijson
and Weiss (1977), and Weiss (1988)).

The section introduces the branching bandit model, defines associated optimal
scheduling problems, and shows how to cast them in the framework presented in §4.
Suitable performance measures are defined, and it is established that they satisfy
generalized conservation laws. The scheduling problems are thus formulated as linear
programs over extended polymatroids, and they are shown to be solved by a
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priority-index policy, with the optimal indices being computed by a one-pass
adaptive-greedy algorithm.

A branching bandit is a versatile model of a multiclass single-server queue. The
systems that can be modeled as branching bandits include multiclass queues in
discrete or continuous time, and with or without arrivals, as well as multiarmed
bandits. This model was first introduced by Meilijson and Weiss (1977).

In a branching bandit model, a single server must be allocated over time to jobs
demanding its service attention. Jobs are classified in a finite number of job classes
ie#={1,...,n}. We associate with job class i a random service time vu; and
random arrivals (&), . ,. When a class-i job completes its service, it is replaced by
new jobs N, of classy, for j € #. Given the job class-i, the service time and the
descendants (v, (N,,),¢.#) are random variables with an arbitrary joint distribution,
independent of all other jobs. Jobs are to be selected for service under an admissible
policy u, which must be nonanticipative (decisions may be based on past and present
information on the evolution of the system, but not on future information, such as the
service time of the next job to be serviced), nonidling (the server is busy as long as
there are jobs in the system) and nonpreemptive (the service of a job, once started,
must proceed without interruption until its completion). Let us denote % the class of
admissible policies. The decision epochs are ¢ = 0 and the instants at which a job is
completed and there is some other job present.

We next introduce some notation and concepts that will be useful for analyzing the
sample-path of a branching bandit process. Let S C.# be a subset of job classes. We
shall refer to jobs whose classes are in § as S-jobs. We are interested in studying the
busy period of a branching bandit process. This busy period may be represented as a
tree. We say that S-job i, is an S-descendant of job i, if #; belongs in the subtree of
the busy period that is rooted at i;,. Given a job i in a busy period, the union of
intervals where S-descendants of i are being processed is called an (i, S)-period.
Notice that under a policy that gives complete priority to S-jobs, these intervals will
be consecutive. Let T° be the duration (possibly infinite) of an (i, S)-period. We
define TLS(O) as the time needed for first clearing the system of S-jobs, under a policy
that gives priority to S-jobs. The distributions of T;* and of T}, are independent of
the admissible policy used, as long as it gives priority to S-jobs. Notice that an
(i, D)-period is distributed as the service time v,. It will be convenient to introduce
the following additional notation:

v, = service time corresponding to the kth selection of a class-i job; notice that
the distribution of v, , is independent of k (v,).

T, = time at which the kth selection of a class-i job occurs;

v, = number of times a class-i job is selected (can be infinite);

{T3)c » 1 = duration of the (i, §)-period that starts with the kth selection of a class-i
job for the kth time. Notice that the distribution of 7;%, is independent of k (T.5).

I(t) = 1, if a class-{ job is in service at time ¢; 0, otherwise.

L (t) = number of class-i jobs in the system at time ¢. We denote L(¢) = (L (#)), ,.
TLS(O) = time until the system is first cleared of S-jobs (can be infinite) under a
policy that gives priority to S-jobs; notice that Tz’(fo) is the length of the busy period.

The busy period of a branching bandit process has a simple structure under priority
policies. This fact, which will be needed later for proving that certain performance
measures satisfy conservation laws, is made precise and shown next. Let § C.#-

PROPOSITION 4. Under an admissible policy that gives priority to S°-jobs, the busy
period [0, T,f’(/n)) can be partitioned as follows:

(18) [0.770) = [0.750) U U [0 7 + T)-
1€85 k=1
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PROOF OUTLINE. Identity (18) simply expresses the intuitive fact that under a
policy that gives complete priority to S°-jobs, the busy period is partitioned into: (1)
an initial interval, in which the system is first cleared of S¢-jobs; and (2) a sequence of
consecutive intervals, each of which starts with the service of an S-job, and lasts until
the system is first cleared of its descendant S¢-jobs. O

5.1. Discounted branching bandits

5.1.1.  The discounted reward-tax problem. Consider the following linear discounted
reward-tax structure on a branching bandit process: an instantaneous reward r; is
received at the completion epoch of a class-i job. In addition, a holding tax a#h, is
incurred continuously while a class-i job is in the system. Rewards and taxes are
discounted in time with a discount factor a > 0.

The discounted reward-tax problem consists in finding an admissible scheduling
policy that maximizes the total expected discounted value of rewards earned minus
taxes incurred. This problem was first introduced and shown to be solved by a
priority-index policy by Weiss (1988).

Let us define the objective to be maximized as Z{""(a), where

Z{"M(a)-expected total discounted value of rewards received minus taxes incurred
under scheduling policy u.

The problem can now be written as

maxZ M ).
maxZ, (a)

We shall show how to formulate and solve this problem in the framework developed
in §4.

5.1.2. Performance measures. We introduce next two families of performance
measures for branching bandits, {\“(@)},, , and {L¥“(a)}, (, that are appropriate
for modeling the linear discounted reward-tax structure described above. For a given
a > 0, we define performance measure A;(a) of classj jobs under policy u to be
total expected discounted number of class-j job service completions, i.e.,

(19) N(a) = E,,[ 3 <>]
k=1

Y
- E[e““"]EU[ Y e-w], forj € 4,
k=1

and we shall write A“(a) = (A/(a)), c -
Let us define L}"(a) as the total expected discounted number of class-j jobs in the
system under policy u € %, i.e.,

& U — TI{O) —at ;
L (a)—E,,j0 L(t)e*'dt|, forje .,

and let L*(a) = (L¥"(a)), < 4-
We shall show next that the objective to be maximized, Z{""(a), can be expressed
as a linear function of performance vector A“(a).
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In the pure rewards case, i.e. when & = 0,

(20 Zy9(a) =E,| T ¥ reecwre
e k=1
= L ri(a).
=

We show now how to reduce the general reward-tax problem to the pure rewards
case, using an accounting argument introduced by Bell (1971). The total expected
discounted value of holding taxes is the same whether they are charged continuously
in time, or according to the following charging scheme: At the arrival epoch of a
class-i job, charge the system with an instantaneous entrance change of h,, equal to
the total discounted holding cost that would be incurred if the job remained within
the system forever; at the departure epoch of the job (if it ever departs), credit the
system with an instantaneous departure refund of h;, thus refunding that portion of
the entrance cost corresponding to residence beyond the departure epoch. We can
thus write

(21) Zl(lr‘h)(a) = Z rAdi(a) — a Z h]L*“(a)

€.t JE A
= E [Rewars] — E,[Charges at ¢ = 0]
+(E,[Departure refunds] ~ E,[Entrance charges])

- Z00(a) = T BL(O) + 2§ a)
e N

= Z[([H—ra,l))(a) - Z hlLl(O)

e

= Z (ri+rt,a))‘i‘(a)-_ Zh,L,(O),

1.4 e
where the components of vector r, = (r; ,);c , are given by

E[N;e "]

E[e—au/] h

(22) Ta=h - X

j eV

i, forjews.

Notice that by letting r = 0, 2, = 1 and k, = 0 for i # j in (21) we obtain a linear
relation between performance vectors L**(a) and A*(a):

i 113 E M e_aU' u ;
(23) OILT (a) = LJ(O) —A(a) + IEZ:///%UJ]—])\[(a), forje s

5.1.3.  Generalized conservation laws. We show in this section that the performance
measure for branching bandits A“(a) satisfies generalized conservation laws. Let us
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define, for § c .7,

aE[fT‘ye"‘” dt]
0

(24) A= Ele] fori € S, and

(25) bo(S) aE[fT’/"V"’e““dt] - aE[/Tf<3>e-ﬂfdz].
0 0

The conservation laws we present next represent physical work conservation
relations in a branching bandit process. In particular, the total expected discounted
amount of work performed by the server during the busy period is

Tli’(f()) —al
E[fo e dt],

undcr any admissible scheduling policy u € #.
Notice that coefficient 4§ , may be interpreted as the total expected discounted
amount of work performed by the server during and (i, $¢)-period under a policy that
gives priority to S°-jobs (and hence under which that (i, $¢)-period is a single

interval). The sum

LA A (a)

1€S8

is thus an overestimate of the total expected discounted work performed after the
server first starts servicing s-jobs. This estimate is exact under a policy that gives
priority to S¢jobs. In this case, the expected discounted work done until the system is
first cleared of S°¢jobs is

Tlf(CO) —at
E[fo e dt].

The remaining work is, in that case,

Tl{O) —at — TLS(EOJ —af
E[/O e dt] E[[O e~ dt|,

which is precisely b,(S). This intuitive interpretation is made precise in the proof of
the next result.

THEOREM 7 (GENERALIZED CONSERVATION LAWS FOR DISCOUNTED BRANCHING BAN-
DITS. The performance vector for branching bandits A\*( @) satisfies the following general-
ized conservation laws:

(@) T, c s A4} (A a) = b,(8), for S C.¥, with equality if policy u gives complete priority
to S¢-jobs.

®) T, o, A4  A(a) = b ().

1o

PrOOF. Let § C#. Let us assume that jobs are selected under an admissible
policy u. Let us define two random vectors, (r,),c , and (d?), s, as functions of the
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sample path of the generated branching bandit process as follows:

26 ro= [ I(t)e~*'dt = 5 emet dt
( ) /(; k= lj;zk

i Vi

= e ™| eT* dt, and
k=1 j;)
&= Y e [MRerar,  ies.

k=1 0
Now, we have
(27) E[r]=E| Le [ ‘*e-a'dr]

| k=1 Y

= E., Z _“"‘LU'ke‘“‘dtlvz]]

-~

=EU-Z "”"Iv]E[f "“dt]]
(28) =E[[Ou'e-a'dt]E,,[kée“Mw]

) E[fou'e_“‘dt] .

E[e¥]

Notice that equality (27) holds because, since u is nonanticipative, 7, and v, are
independent random variables. Furthermore,

(29) E“[d?‘] — [Z —a'r,k'/(’) .k —azdt] g

v, .
E[ Z e—aﬂkfﬁie_mdtlyt]]

k=1 0

= F l E Ttsc —atdt]E =0Ty,
| Z e ate )

(30) = E[/{)T'ye‘”‘dt]Eu[ 3 e-am]

=Af‘aE[fU'e‘“'dt]Eu[ Y e_‘”'k].
0

Notice that equality (29) holds because, since u is nonanticipative, 7,, and T3 are
independent. Hence, by (28) and (30)

E[df] =45 A(a), fories,

L,a 't
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and we thus obtain
(31) Ell Z d;g Z Al o Alll
ieS =N

We first show that if policy u = 7 gives complete priority ty S°-jobs then generalized
conservation law (a) holds with equality. Applying Proposition 4, we obtain

V, "
(32) fTL/‘/O’e‘“'dt= fT‘S“”e"“‘dt+ PDY ff”‘”’ie““dt
0 0 1€8 k=1"Ti
— j’TL((l) -t gy Z Z e—a‘r,kf —atdt
0 €8 k=1 0
= '[Tiv‘c‘”e“""dt + Y dl
7.
0 1€S

Hence, taking expectations and using equation (31) we obtain

Tio), —at - T80, - at
E[f0 e dt] E[/O Vgt g

or equivalently, by (25),

+ 2 A} M (a)

ie§

Y AS AT (@) = b,(S),
1€8
which proves that generalized conservation law (a) holds with equality. Notice that by
letting S = & we obtain the conservation law in part (b).
We next show that generalized conservation law (a) is satisfied in the inequality
case. We will use a sample path interchange argument.
Let the jobs be selected under an admissible policy u. For a given sample path of
the branching bandit process let us consider the sum

Z dS Z Z fT:k+Ttice—atdt-

ie§ i€eS k=1 Tu

e
I 1,k I | ’ I
o ALY FZ

=)

—f —+

A B C

FIGURE 5. Interchange argument.
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Suppose that at time 7,. ,. a class-i* job, with i* € § is selected for the k*th time.
Suppose that at that time a class-/* job, with j* € §° is also available, but it is
selected later, at time 7,. ;.. Let us consider the effect of selecting instead that class—*
job in §¢ at time 7,. ,., and selecting immediately afterwards the class-i* job. Let us
call the corresponding policy u’'. Let 4, B and C be the segments shown in Figure 5.
The sum d® can be decomposed as

(33) dS = Z Z f"’;k+Tﬁvce—at dt

1€85 k=1:1,€4 Tk

1€8 k=1:7,€B Tk

+ Z i /Txk+Tzice—atdt.

1E€S k=1:7,;€C Tk

Let d'* be the sum corresponding to policy u'. It is clear from Figure 5, (33) and that
fact that the function e™** is decreasing in ¢ that

(34) d;S — E Z ank+T;ice—aldt

1ES k=1:7,€A4 Tk

Vl 4
Thtue p+TY
4+ Z Z kT U lke atdt

1E€S k=1:7,€B " T~V 1t

- Z i /le+Tlice—at dt

1€8 k=1:1;€C Tk
<ds.

It follows that for this sample path a policy that gives complete priority to S°-jobs
minimizes the sum d°. Hence this result holds taking expectations, and by equation
(31) conservation law (a) follows, which completes the proof of the theorem. o

Since performance measure A*(a) satisfies generalized conservation laws, the
results of §4 apply. Direct application of Theorem 4 yields the next result.

COROLLARY 2. The performance region for branching bandits corresponding to perfor-
mance vector \'(a) is the extended contra-polymatroid #(A,,b,); furthermore, the
vertices of #.(A,, b,) are the performance vectors corresponding to static-priority policies.

5.1.4.  Optimal solution. From equation (21) it is clear how to apply the results of
§4 to solve the reward-tax problem: run adaptive-greedy algorithm &% with input

(r+r,, A,). Let y,(a),...,y,(a) be the allocation indices so obtained. Then we
have, by Theorem 5.

THEOREM 8 (INDEXABILITY: DISCOUNTED BRANCHING BANDITS). _An optimal schedul-
ing policy is to serve at each decision epoch a job with largest current allocation index
().

The previous theorem characterizes the structure of the optimal policy. We will see
later that we can also compute the performance of the optimal policy, as we will
present in Proposition 6 closed formulae for matrix A4, and set function b,.
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5.1.5. Economic interpretation of allocation indices in discounted branching bandits.
The original definition of dynamic allocation indices in multiarmed bandit problems
(see e.g. Gittins (1989)) characterized them as optimal reward rates with respect to a
family of stopping times. Our definition of allocation indices, on the other hand,
involves sums of optimal dual variables in a certain linear program. In this section we
clarify the relation between these two definitions, and show that they are, indeed,
equivalent.

Given a discounted branching bandit problem, as described above, we shall define
a modified problem by adding an additional job class, which we label 0, with infinite
service time (i.e., v, = *). A reward of r,, continuously discounted in time, is
received for each unit of time that a class-0 job is in service. Notice that the option to
serve a class-0 job may be interpreted as an option to retire from the game modeled
by the original problem for a pension of r,, discounted in time. Notice also that the
modified problem is still a branching bandit problem.

Let us now assume that at time ¢ = 0 there are only two jobs present, a class-0 and
a class-i job, with i € #. We may then consider the following question: What is the
smallest value of the pension r, that makes the option of retirement (serving the
class-0 job) preferable to the option of continuation (serving the class-i job)? Let us
call this break-even value r(i). Let y,, ..., v, be the allocation indices corresponding
to the original branching bandit problem.

PROPOSITION 5. vy, = rg(i).

PrOOF. Let y(,7{,...,% be the allocation indices for the modified problem. Let
us partition the corresponding modified state space as .# = {0} U It is easily seen
that Assumption 2 holds for the modified problem. Hence Theorem 3 applies, and
the problem is decomposable. Consequently,

¥y =r, and ')’,0=Yj: jes

Now, since by Theorem 8 it is optimal to serve a job with largest current allocation
index, it follows that the break-even reward r; which makes the options of continua-
tion and of retirement (with reward r,) equally attractive is r, = yJ. But, by
definition, r(i) is such a breakpoint. Therefore r¥(i) = y¢, which completes the
proof. o

REMARK. Whittle (1980), (1982) introduced the idea of a retirement option in his
analysis of the multiarmed bandit problem, and provided an interpretation of the
Gittins indices as break-even values. Weber (1992) also made use of this characteriza-
tion of the Gittins indices in his intuitive proof. Here we extend this interpretation to
the more general case of branching bandits. From this characterization it follows that
the allocation indices coincide with the well known Gittins indices in the classical
multiarmed bandit problem.

5.1.6. Parameter computation. The results of the previous sections are structural,
but do not lead to explicit computations of matrix 4, and set function b, appearing
in the generalized conservation laws for the branching bandit problem. Our goal in
this section is to compute from the model data matrix A4, and set function b,.
Combined with the previous results these computations make possible to evaluate the
performance of specific policies.

As generic data for the branching bandit model, we assume that the joint distribu-
tion of (v,,(N,)), < ,) is given by the transform

(35) D(a,z,...,2,) = E[e7*0zla. . 7).
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Notice that

9
E[Nje*] = 7z e 1),

In addition, we are given the Laplace transform of the marginal distribution of
service time v,

VY(a) =E[e™*¥].

Finally the vector L(0) = (L0),..., L,(0)) of jobs present at the start is assumed to
be known.

As we saw in the previous section the duration of an (i, S)-period, TS, plays a
crucial role. We will compute its Laplace transform function,

VS (a) = E[e =T

For this reason we decompose the duration of an (i, §)-period as a sum of indepen-
dent random variables as follows:

d Ny

(36) TP=u+ X LTS,
JES k=1

where v;,{T%,); ., are independent. Therefore,
(37) \Ifis(a) =E[e“aUzE[e_aE/ESZkNL]lT)fklui]]

- E[e_au' l_[E[e_aTls]N”

JES
= (Di(a,\lfss(a), lsc‘), fori € 4,

where ¥§(a) = (¥ (a)),cs. Given S, fixed point system (37) provides a way to
compute the values of ¥;(a), for i € .#. We can now prove the following result:

PROPOSITION 6 (COMPUTATION OF A, AND b,). For a branching bandit process,
matrix A, and set function b, satisfy the following relations:

- PS(
(38) A3 = l—%'a()—), forie Sand S cu;
(39) b (8) = JlE_SIC [\I,ch(a)]L,(O) _ le—I/V‘[\P;/,-(a)]L,(O)’ forS e,

ProoOF. Relation (38) follows directly from the definition of A7 . Furthermore,
d L,
(40) Tiw= X X Ti.

ie§ k=1
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Hence,
Tsli —-a 1 1 —a Li0yrs
(41) E[/o Fog tdt] _1 ZE[C 2 st
— 1 1 Ky L0y
R VA O)

Therefore, from (25), (39) follows. O
REMARKS. 1. Notice that 4, = (1 — ¥(a)/¥,(a), for i € #, and

()

b () =1 —]16‘[/1/[«15./(61)] , for§ cu.

2. From Proposition 6 we can compute matrix A4, and set function b, provided we
can solve system (37). As an example, we illustrate the form of the equations in the
special case, in which the class-j jobs that arrive during the time that we work on
class-i job form a Poisson process with rate A, ie.,

B,z y) = Ele oDt = pat T a1 -3))
jes

In this case, (37) yields

(42) Vi (a) =\I’,(a+ Z)\,j(l—\lfjs(a))), forie .

JE€S

As a result, an algorithm to compute ¥ (a) is as follows:

(1) Find a fixed point for the system of nonlinear equations (42) in terms of ¥ (a).
Although in general (42) might not have a closed form solution, in special cases (v,
exponential) a closed form solution can be obtained.

(2) From Proposition 6 compute (A4,, b,) in terms of ¥*'(a).

5.2. Undiscounted branching bandits. In this section we apply the framework
developed in §4 to the branching bandit problem with a linear undiscounted cost
criterion. This problem was first introduced and solved by Meilijson and Weiss (1977)
using dynamic programming ideas.

We shall assume in what follows that matrix E[N] = (E[N,.]])L je - satisfies the
following condition:

ASSUMPTION 3. Matrix E[ N1 has spectral radius smaller than 1.

Bertsimas, Paschalidis and Tsitsiklis (1994b) proved that under Assumption 3 the
branching bandit process is stable, in the sense that the first and second moments of
its busy period are finite.

5.2.1. The undiscounted tax problem. In the undiscounted tax problem, a holding
tax A, per unit time is incurred continuously while a class-i job is in the system. We
do not consider undiscounted rewards (i.e. a reward 7, is earned on completion of a
class-i job) since the total expected reward earned is the same under all policies. Let
us define the objective to be maximized, Z!, as

Z" = —(total expected tax incurred under policy u).
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The tax problem can now be written as the optimal control problem

43 maxZ".
( ) ue ?x/ “

5.2.2. Performance measures. We introduce next two performance measures, C*
=(C"), e, and W" = (W") . ,, that are appropriate for modeling a linear undis-
counted delay cost structure. We assume in what follows that all the expectations that
appear are finite. Later we will show necessary and sufficient conditions for this
assumption to hold. Using the indicator

1, if a class-j job is in service at time ¢;
0, otherwise,

I(t) = {

we introduced earlier, let us define performance measure C/ as the total expected
completion time of class-j jobs under policy u, i.e.,

(44) ¢/ =E,

4]
> (T T 0 |-
k=1

Let us define another performance measure, W*, as the total expected system time
of class-j jobs under policy u, i.e.,

(45) Wy = E,,[/OTKO)LJ@) dt].

We show now how to express objective Z” as a linear function of performance
vectors W or C" First, it is clear from the definition of the undiscounted tax
problem that

(46) Zl=— ) bW~
=y

As for the relation with performance vector C¥, it is obtained by taking the limit as
a N 0 on Eq. (23), which yields

47 L0

—%/\;‘(0) + ) E[NU]%)\?(O) +g;, forj € #, where
eV

8 = Z E[th(E[Ut]E[]Vz]] - E[Ul‘lvl]])'

e/

Since it can be seen that

d u u
TaM(0) = =Cf,

we obtain the following linear relation between performance vectors W* and C*:

(48) W= Ci— ¥ E[N,IC! +g;, forje s
e N
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We can also express objective Z” as a linear function of performance vector C*. By
(48),

(49) zi=— T nwy
jeN

Il

-y (h,— > E[NU]hJ)C,“—— Y hg.

et jeN eV

5.2.3. Conservation laws for the completion times. We show next that performance
measures C* satisfies generalized conservation laws. Let us define

(50) A5 =E[TY], forie S, and

(51) b(S) = %E{(T‘L”("O))Z] - %E[(TLS[O))Z] + Y b,(S), where

1S5
b(S) = E[V,](E[u,]E[zS”] - %E[(Tﬁ‘)z]), fori € S.

THEOREM 9 (GENERALIZED CONSERVATION LAWS FOR THE COMPLETION TIMES). The
performance vector for branching bandits C* satisfies the following generalized conserva-
tion laws:

(@) X, A5CH < b(S), for S C, with equality if policy u gives complete priority to
S¢-jobs.

b) X, ,ATCH = b,

Proor. Let S c.#. Let us assume that jobs are selected under an admissible

policy u. This generates a branching bandit process. Let us define two random
vectors, (), , and (d}); s, as functions of the sample path as follows:

Tt Ui

(52) , fOxI,(t)tdt= i[ tdt

k=1 T

\,
il

Now, we have
] 1)2
(53) Eu[rz] = Eu Z E (Utthk + %)]Vl

E[v]
=E >

t

)J

(54) = E[v
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Note that equality (53) holds because, since u is nonanticipative, 7, and v, are
independent random variables. Furthermore,

k=1 Tk k=1 Tk

(L._>)|”

E[v]E[(15]
—an

) Elas]=E|XL [ T‘*”'ftdt] =EU[E[ | ""”‘ictdtlv,”
2

=E[Ttsc]Eu|: Z‘ Tik +

k=1

Note that equality (55) holds because, since policy u is nonanticipative, 7;, and )}
are independent random variables. Hence, by (54) and (55),

E[r] - E[v]E[]

Cz“_E[Vf]E[Uz] = E[Ui]

I e 00 2 (0
= E[T,Sr] , i

and therefore we obtain

(56) ¥ ASCH = E[ ) df] + T b(S).

1e§ es ies§

We will first show that if policy u = = gives complete priority to S° jobs then
generalized conservation law (a) holds with equality. Applying Proposition 4 we
obtain:

(57) fo Tiog gt = fo Tiorge + Y ¥ / Wty

€S k=1" T

¢ \2
Eo) | ygs

ies

Hence, taking expectations and using Eq. (56) and the definition of 5(S) we obtain

L AJCT = b(S),

[1=h)

which proves that generalized conservation law (a) holds with equality. Notice that by
letting § = J part (b) follows.

We next show that generalized conservation law (a) is satisfied in the inequality
case. We will use a sample path interchange argument. Let the jobs be selected under
an admissible policy u. For a given sample path of the branching bandit process let us
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consider the sum

#=Ya=% % [*Thar.

1es €8 k=1 Tu

Suppose that at time 7. ,. a class-i* job, with i* € § is selected for the k*th time.
Suppose that at that time a class-j* job, with j* € S¢ is also available, but it is
selected later, at time 7. ;.. Let us consider the effect of selecting instead that class*
job in §¢ at time 7,. ,., and selecting immediately afterwards the class-i* job. Let us
call the corresponding policy u'. Let A4, B and C be the segments shown in Figure 5.
The sum d° can be decomposed as

(58) #=Y T [T

i€S k=1:7,€A4 Tk

v, .
+yY ¥ fr"‘+T‘§‘tdt

€85 k=1:17,€B Tk

+Y i: / Wt iy gy,

€85 k=1:7,€C Tk

Let d'® be the sum corresponding to policy u'. It is clear from Figure 5, (58) and the
fact that the function ¢ is increasing in ¢ that

d!S — Z i thk+T:ictdt

1€85 k=1:7,€A4 Tk

n Z i le+Ul‘v1‘+T,ictdt

1€8 k=1:74,€B TtV v

v, .
+y Y fT‘”T'itdt

1€§5 k=1:1,€C Tk
> ds.

It follows that for this sample path a policy that gives complete priority to S°-jobs
maximizes the sum d5. Hence this result holds taking expectations, and by Eq. (56)
conservation law (a) follows, which completes the proof of the theorem. ©

COROLLARY 3.  The performance region for branching bandits corresponding to perfor-
mance vector C" is the extended polymatroid P(A, b); furthermore, the vertices of
P(A, b) are the performance vectors corresponding to static-priority rules.

5.2.4. Conservation laws for the number in system. We show next that the perfor-
mance measure for branching bandits W* defined by (45) satisfies generalized
conservation laws. Let us define, for § .7,

(59) A3 = E[TS], forie S, and
(60) b(S) = b(#) = b(5°) + L gE[T’],
JES

where g, is given by (47).
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THEOREM 10 (GENERALIZED CONSERVATION LAWS FOR THE NUMBER IN SYSTEM). The
performance vector for branching bandits W* satisfies the following generalized conserva-
tion laws:

(@) L, AW = B(S), for S CA, with equality if policy u gives complete priority to
S-jobs. _ _

®) T, c o ATW! = b1).

ProoF. By applying Eq. (48) for relating C* with W*, we obtain

— E[T{]
(61) Y A7 =C"'(1 - E[N]) 0 - ¢5E[T¢]
JES
wr (Is - E[Nss])E[TsS] , s
=C B[ Nes JE[ 7S] + gsE[T7]
s E[us] ,
=\ B - E[12] * &[]
(62) =b(#) = L A7C+ L gE[T]],

iesc JES

where (61) follows from the results in §5.2.6 below. Now, by the conservation laws
satisfied by C* (see Theorem 9) the result follows. ©

COROLLARY 4. The performance region for branching bandits corresponding to perfor-
mance vector W" is the extended contra-polymatroid 3”6(21—, b); furthermore, the vertices
of #A, b) are the performance vectors corresponding to static-priority rules.

5.2.5. Optimal solution. From Egs. (46) and (49) and the conservation laws satis-
fied by C" and W* we obtain two different algorithms for solving tax problem (43):
the first one corresponds to running adaptive greedy algorithm &€ with input
(—h, A), and it is a bottom-up algorithm (i.e., priorities are computed from lowest to
highest); the second one corresponds to running algorithm & with input (7, 4),
where

(63) ?l = hi - Z E[M]]h],
JEN

and it is a top-down algorithm (i.e., priorities are computed from highest to lowest).
5.2.6.  Parameter computation. In this section we show how to compute matrix A
and set function b from the branching model data. Recall that

A5 =E[TS], forie S, and

b($)

1 1 c ¢ 1 ¢

2E[(10)] - 28[(m0)] + T et EtlEln] - 22[(1)])
1€

From Eq. (36) we obtain, taking expectations:

(64) E[T’] =E[v] + ¥ E[N,)E[T}], forie w.
JES
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Solving this linear system we obtain E[7,%]. Note that the computation of A} is much
easier in the undiscounted case compared with the discounted case, where we had to
solve a system of nonlinear equations. Also, applying the conditional variance formula
to (36) we obtain:

var[17] = Var[y] + (E[T®]) s Cov[(N,), <5 | (E[T°])

JES

+ Y E[N)|Var[T*], iew.
JES

Solving this linear system we obtain Var{7’] and thus E[(7*)?]. Moreover, the
expected number of class j jobs serviced during the busy period, E[v,], for j € .7, can
be obtained by solving the linear system

E[v]=L,(0) + X E[N;]E[v], forje .
et

Furthermore, from Eq. (40) we obtain

E[T{y] = X L(0)E[T?], and
ies
Var[T,| = ¥ L,(0)Var[T?].
15
For computing b(S) the quantity E[u,N, ,1is needed. It is easy to see that

J
E[yN;] = mq’i(l,h)'

5.3. Summary. Table 3 summarizes the problems we considered, the perfor-
mance measures used, the conservation laws, the corresponding performance region,
as well as the input to algorithm & %.

6. Special cases. In this section we present new linear programming formula-
tions for several classical stochastic scheduling problems, by specializing the results of
§5 for branching bandit problems. We show how to model each problem as a
branching bandit problem, then characterize explicitly its performance region, and
finally derive an optimal solution algorithm. The problems we address are: the
multiarmed bandit problem, the problem of optimal dynamic scheduling of a multi-
class queue with feedback, and the problem of scheduling a fixed batch of jobs.

TABLE 3
Branching Bandit Problems: Formulation and Solution
Problem Performance measure Performance region Indices
iv4:2
ma}( Z5 M a) M) P.(A4,,b,) (r,, A) = v(a)
uell
Ay, b, see (38), (39) r,: see (22)
h . NG
max Z; c P(A, b) (F,A) —» vy
ue?
A, b: see (50), (51) 7: see (63)
—- VE
W Z(L) (-1, D5y

A, b: see (59), (60)
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6.1. The multiarmed bandit problem

6.1.1. Problem definition. The multiarmed bandit problem can be described as
follows: There are K parallel projects, indexed k = 1,..., K. Project k can be in one
of a finite number of states j, € .. At each instant of discrete time ¢ = 0,1,... one
must work on exactly one project If one works on project k in state j (¢) at time ¢,
then an immediate reward of r .y is earned. Rewards are additive and are dis-
counted in time by a discount factor 0 < B < 1. The state j(¢) changes to ]k(t + 1)
by a homogeneous Markov transition rule, with transition matrix P* = ( p,]),‘ Je.p
while the states of the projects one has not engaged remain unchanged. The problem
is to find an admissible scheduling policy u € # (the class of admissible policies %
consists of all nonanticipative and nonidling policies) that selects at each time a
project to engage in order to maximize the total expected discounted reward earned
over an infinite horizon,

Z = maxFE,
uEX

T s
=0

6.1.2. Modeling as a branching bandit problem. We shall model the problem as a
discounted branching bandit problem in order to apply the results of §5.1. We thus
identify project states with job classes, in such a way that working on a project in state
i corresponds to serving a class-i job. Using the notation of §5.1, we define the set of
job classes to be .#" = U X_,.#,. All jobs have unit processing times, so that v, = 1, for
i € #. The continuous-time discount factor a is related to B by e™* = B. Let us
define matrix P = (p, ), ;= , by

b= {p,’j, iti,j e, forsomek=1,...,K;
1y

0, otherwise,

and vector r = (r), o, by r,=1r,, if i € #, for k=1,..., K. The vector of class-j
descendants (N,,),  , of a class-i job is a multinomial random variable, as a class-i job
has only one descendent, which is of classy with probability p;,. The reward earned
upon completion of a class-i job is r,.

Let us also define the discrete-time indicator

1, if a project in state j is engaged at time ¢;
0, otherwise.

1o - |

The performance measure A“(a) = (A{(a)),c , for discounted branching bandits
given by (19) simplifies in this case into

X(a) = BE,,[ )> 1,(t)ﬁ‘], for j & .
t=0

We may interpret A («) as the total expected discounted time spent working on a
project in state j under policy u.

In terms of these performance measures, the multiarmed bandit problem can be
written as

BZ = max Y Ay

le//

6.1.3.  Performance region. By Theorem 7, we know that performance measure
A(a) satisfies generalized conservation laws, and that the performance region it

Copyright © 2001 All Rights Reserved



296 D. BERTSIMAS AND J. NINO-MORA

spans is the extended contra-polymatroid #.(A4,, b,), where 4, and b, are defined

a’ Ya

in (24) and (25), respectively. We shall show next how to compute 4, and b,
explicitly from the data of the multiarmed bandit model.

Parameter computation. For S C.#, let vector ¢§ = (¢5); be defined as the solution
of the linear system

(65) tf$=1+BY p,t}, fories.
JES

Let us also define

1, if there is a project in state j at time ¢ = 0;
0, otherwise.

L,(0) = {

PROPOSITION 7. Matrix A, and set function b, are given by the following expressions:

(a)

AY = “Tﬁ(l +B8 Y putjsc), fori € S;

Jese
(b)
5oy L,
b(S)=TI(1~-QQ-p))"", forScr
JES°
PrROOF. We have, by Eq. (35),
(66) ®O(a,z,...,2,) = E[e7auzn . 2]
=e ° Z pljzj

je.

=B Y p,z, fories,
1M

. and, by (37),
(67) VS (a) = @(a, (¥ (a)),c50 15¢)

-8(Zp¥@) + ¥ )

JES JESC

= '3(1 - Yp,(1- \Ifjs(a))), fori € /.

JES
Now, it follows from (67) and (65) that

s _ 1_‘\Iizs(a)

t ——i—_:———q’l(a—), fori €S,
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and part (a) follows by (67) and Proposition 6. Moreover, since ¥/"(a) = 0, Proposi-
tion 6 yields

It

(68) bu(5) = T1 [% ()]

[Ta-a- By ),

jese

which proves (b). O
Proposition 7 together with Theorem 7 and Corollary 2 yield directly the following
result.

PROPOSITION 8 (PERFORMANCE REGION FOR MULTIARMED BANDITS). The perfor-
mance region spanned by performance vectors A*(a) in the multiarmed bandit problem is
the extended contra-polymatroid defined by

(69) Y (1 +B8 ) p,,tf‘))\, > 1f

€8 JES®

IT(-- g)es )", fors e,

JESS

™

__B
Z)\,—l—_g,

I=a
A20, foried.

Furthermore, the performance vector A*(a) corresponding to a scheduling policy that gives
complete priority to projects with states in S¢ achieves equality in (69).

6.1.4. Optimal solution. Gittins and Jones (1974) first showed that the optimal
policy for the multiarmed bandit problem is a priority-index policy. The optimal
priority indices can be computed by running adaptive greedy algorithm & with
input (r, 4,).

Index decomposition. Gittins and Jones (1974) further showed that the optimal
indices associated with states of a project only depend on characteristics of that
project (states, rewards and transition probabilities).

THEOREM 11 (GITTINS AND JONES 1974). For each project k there exist indices
{v/} c..,» depending only on characteristics of that project, such that an optimal policy is
to work at each time on a project with largest current index.

This classical result follows in our framework as a consequence of Theorem 3 on
the decomposition of optimal indices. In particular, the structure of matrix P = (p,;)
implies that

A5, =A%, forje SN,
so that Assumption 2 holds.

By the results of §5.1.5 we know that the allocation indices for this bandit problem
are precisely the dynamic allocation indices introduced by Gittins and Jones (1974)
(also called Gittins indices). Furthermore, by definition of allocation indices, we
obtain a characterization of Gittins indices as sums of dual variables, a purely
algebraic characterization. By Theorem 6, the Gittins indices can be computed by
solving K subproblems, applying adaptive greedy algorithm &, presented in §3, to
subproblem k, which has |#,| job classes, for k = 1,..., K.
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The index-computing algorithm proposed by Varaiya, Walrand and Buyukkoc
(1985) has the same time complexity as adaptive greedy algorithm €. In fact, both
algorithms are closely related, as we will see next. Let ¢ be as given by (65). Let r
be given by

s _ N ;
n=r+BY p,r, fories.
JES

The algorithm of Varaiya, Walrand and Buyukkoc can be stated as folows:
Algorithm 778
Step 0. Pick 7, € argmax{rV/t}}: i € #); let g, = max{ri/tf}: i € #); set J; =
{m}.
Stepk.For j=2,...,n:

rlj,,u(:} r,]!-lu(’)

M ! .« g . —_— . g .

pick 7, € argmax PR € #\J_q};set 8, = _ti’rlu(‘) S X ANV /IRR
{

Varaiya et al. (1985) proved that g,,..., g,, as given by algorithm 7"%"B, are the
Gittins indices of the multiarmed bandit problem. Let (mr, ,y) be an output of
algorithm ./¥. The following relation between algorithms /% and %8 can be
easily seen to hold by induction:

PROPOSITION 8. The following relations hold: Forj=1,...,n — 1,
rl("'l" N0 B r,— }=1A(l‘i’2 'ﬂn)y(ﬂlﬂ-l)' » T}
(e o A(:rjorl ,,,,, e
r(""l, “’7'])
] .
= forie{m\,...,m}, and
kK
{}
rl rl .
—_— - =0, foriews
T J :

and therefore, algorithms /% and 77" are equivalent.

Algorithm &% thus provides a new off-line top-down method (i.e., priorities are
computed from highest to lowest) for computing Gittins indices. As shown above, it
has the same computational complexity as the algorithm of Varaiya et al. (the faster
off-line algorithm for computing Gittins indices known). The algorithms presented by
Chen and Katehakis (1986) and by Katehakis and Veinott (1987) are on-line methods
(they compute the Gittins index on a given state).

6.15. A closed formula for the optimal value function; submodularity. In this
section we present a closed formula for the optimal value of a multiarmed bandit
problem. We apply that formula to provide a new proof that the optimal value of the
problem, seen as a function of the subset of projects involved, is a submodular set
function.

Given a multiarmed bandit problem with K projects, let us consider subproblem &,
the one-armed bandit problem corresponding to project k, for k = 1,..., K. Let

k .
Y, fori, €.
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be the Gittins indices corresponding to subproblem (project) k. Let b* be the set
function corresponding to subproblem k as given by Eq. (68), i.e.,

pE(S) = T1 (1-(1-p)ns)”, fors, cs.

JE-IN\Sk
PrOPOSITION 10. For each k, I
b(S, US)) =b*(S)b'(S), forS, A and S, CA].

PROOF OUTLINE. Using the fact that ¢f = "7 if j & .4 the result follows
trivially. O

Now, in order to solve the maximum reward problem, we run algorithm &% with
input (r, A,). Let 7 be a permutation of .#" produced by the algorlthm If {y};c, are
the correspondmg Gittins indices, 7 must satisfy y, < '+ < vy, . Permutation = of
 induces permutations 7% of #, for k =1,..., K.

If {y*}, ,, are the Gittins indices correspondmg to subproblem k, 7* must satisfy

Yok S S Yok

I;1

Let us define mdependent random variables 7, n, € #, for k =1,..., K, by

P{ne{nm,...,n}}=b({m,....,m}), fori=1,...,n and

P{nk e {771",..., w,k}} = bk({ﬂ'{‘,..., W,k}), fori=1,...,l%l

Given a subset of projects H < {1,..., K}, let Z(H) denote the optimal reward in
the multiarmed bandit problem obtained when only projects in subset H are
available. We have the following result:

THEOREM 12 (OPTIMAL REWARD OF THE MULTIARMED BANDIT PROBLEM). The
optimal reward Z(H) can be expressed as

70 Z(H) =E k].
(70) (H) = E| max

PROOF. Since projects can be aggregated, it is enough to prove the theorem for
the case of two projects, i.e., K = 2. First, notice that by Eq. (70), the expression for
the optimal objective value of a linear program over an extended contra-polymatroid,

and the characterization of the performance region of the multiarmed bandit as an
extended polymatroid, we obtain:

b({my,....m}) — b({my,..., m})
202 = Grotreo )|y N i)
b({m.})

=E[vy,]

Now, let H = {1,2}. In order to prove that Eq. (70) holds, it is enough to show that
the following two random variables have the same distribution:

(71) max(%), %2) = %
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We have, for a given y,.:
(72) P{max(ynll, ) < w} = P{y} < 7. JP{¥2 < 7.}
= ({1 = Ay < vl Jp({n € 0 42 < )
=b({ie 7y <))
= Py, < v.}.

Hence, the equality in distribution (71) holds, and the result follows. 0

COROLLARY 5 (SUBMODULARITY OF THE OPTIMAL REWARD FUNCTION).  The optimal
reward function Z(H) of the multiarmed bandit problem is a submodular set function.

ProoF. Since the function H — max, . 5 d, is submodular, for any given vector
of d;s the result follows directly from formula (70). o

The fact that the optimal reward function of the multiarmed bandit problem is
submodular was first shown by Weber (1992), who proved it from first principles.
Tsitsiklis (1986) provided an early result in this direction.

6.2. Scheduling control of a multiclass queue with Bernoulli feedback

6.2.1. System description. A multiclass M/G/1 queue with Bernoulli feedback
can be described as follows: A single server provides service to jobs, which are
classified in a finite number n of classes. External arrivals of class-i jobs follow a
Poisson process of rate A, for i € #={1,..., n}. Service times for class-i jobs are
independent and identically distributed as a random variable v, with distribution
function G,. When the service of a class-i job is completed, the job may either join
the queue of classy jobs, with probability p, (thus becoming a classyj job) or, with
probability 1 — X, ,p,,, leave the system.

The server must select the jobs for service according to an admissible scheduling
policy u € %, which must be nonidling, nonpreemptive and nonanticipative; the
decision epochs are t = 0 (if there is initially some job present), the times at which a
job arrives to find the system empty, and the times at which a job completes service.

Klimov (1974) solved, by direct methods, the associated optimal control problem
with a time-average holding cost criterion. Harrison (1975a) solved, using dynamic
programming, the optimal control problem with a discounted reward-cost criterion, in
the special case that there is no job feedback. Tcha and Pliska (1977) extended
Harrison’s results to the case with feedback.

6.2.2. Modeling as a branching bandit. The first busy period of a multiclass queue
with Bernoulli feedback, as described above, can easily be modeled as a branching
bandit. The set .#" of job classes, and the service times v, of class-j jobs are as in the
corresponding queueing system. The class-j descendants N, of a class-i job corre-
spond to the number of external class;j job arrivals, along with the internal job
transfers to class-j, occurring during the service of a class — i job.

6.2.3.  Discounted reward-cost objective. Let us consider the following reward-cost
structure: a continuous holding cost a#; is incurred per unit time that a class class-i
job stays in the system. Furthermore, an instantaneous reward r, is earned at the
service completion epoch of a class-i job. All costs and rewards are continuously
discounted in time by a discount factor a > 0.

The optimal scheduling problem is to find an admissible policy for assigning the
server to the jobs demanding its service, in order to maximize the total expected
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discounted value of the rewards earned minus the holding costs incurred over an
infinite horizon.

6.2.4. Performing region and optimal solution. For a given a > 0, we define perfor-
mance measure A‘(a) of classy jobs under policy u to be total expected discounted
number of class-j job service completions, i.c.,

v

/\u a) — Z —a (T toy )]’ fOI'j = ./I/’

exactly as we did in our treatment of the discounted branching bandit problem.
The optimal value of the problem Z{""(a), can be written in terms of perfor-
mance measure A"(a) as

Zr(a) = ¥ (n+ )M (a) — X hL(0),

1.4 ie. /s

by (21), where vector r, = (r; ,),c o is given by (22).

By Theorem 7, we know that performance measure A“(«) satisfies generalized
conservation laws, and that the performance region it spans is the extended contra-
polymatroid £.(A,, b,), where A, and b, are defined by (24) and (25), respectively.
We shall show next how to compute A, and b, from the data of the multiarmed
bandit model.

Parameter computation. In the notation introduced in §5.1, we have that transform
®(-) is given by

(73)  D(a,z,,...,2,) = E[e %zl . z}n]

—E (1 - X pu(l - Zj))e—U.(lH'Z]E,-/\](l—zj))}

je. b

( T py(1- )) (a+ Z/\(l—z))

JEN JEN

Therefore, by (37) and (73) we obtain that the values of ¥’(a), for i € .#, satisfy
the system of equations

¥ (a )—(1- zpu(l-w(a))) (a+ A (1 - ¥ (a ))), forie s

JES JES

Proposition 6, yields closed formulae for computing matrix 4, and set function b,
in terms of the ¥ (a)s and the ¥,(a)s. By the results in §5.1, the performance region
spanned by performance vector A*(a) is the extended contra-polymatroid (A4, b,),
and it shown there how to apply adaptive greedy algorithm /% in order to compute
the priority indices corresponding to the optimal scheduling policy.

6.2.5. Undiscounted cost objective. Klimov (1974) first considered the problem of
optimal control of a single-server multiclass queue with Bernoulli feedback, with the
criterion of minimizing the time-average holding cost. He established that the optimal
nonidling, nonpreemptive and nonanticipative scheduling policy is a static-priority
policy, and presented an algorithm for computing the optimal priorities. Tsoucas
(1991) formulted Klimov’s problem as a linear program over an extended polymatroid,
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using as performance measures
Q! = time-average length of queue / under policy u.

Adaptive greedy algorithm & applied to this problem yields Klimov’s original
algorithm. A disadvantage is that Klimov’s is a bottom-up algorithm: priorities are
computed from lowest to highest. Also, Tsoucas does not obtain closed formulae for
the right hand sides of the extended polymatroid inequalities, so it is not possible to
evaluate the performance of an optimal policy. Our approach yields a top-down
algorithm, gives explicit formulae for all the parameters of the extended polymatroid,
and explains the somewhat surprising property that the optimal priorities do not
depend on the arrival rates. The key observation for reducing the problem to a
branching bandit problem is that an optimal policy under the time-average holding
cost criterion must minimize the total expected holding cost in a busy period (see,
e.g., Nain, Tsoucas and Walrand (1989)).

6.2.6. Performance region. By the results in §5.2 on the undiscounted branching
bandit problem, we know that the performance regions spanned by the vector of
expected system times, W* (resp. expected completion times C*“) is the extended
contra-polymatroid (resp. extended polymatroid) 2.(A4,b) (resp. (A, b)), where
parameters A, b, 4 and b are as defined in §5.2. We show next how to compute such
parameters from the model data.

It is easily seen that E[N,;] = p,, + E[v,]A,. Therefore, by (64),

E[T,b] =E[y]+ X (p” +E[UI]AJ)E[T;SC], forie s,
JES®

which is vector notation is written as
E[T&] = E[vge] + (Pgese + E[vs ] X5 ) E[TE], iee.,
E[T&] = (Ise — Pyege — E[vge]Xse) ' E[vge], and
E[T$] = E[us] + (P, 5 + E[vs]XNse) E[1].

Let us define

K det([sc - Pscsc)
$ det([sc - S s E[USC]A,sc) ’

The following algebraic invariance relations can be shown to hold:
E[T§] = Kg(Ige — Pyese) "' E[vge], and
E[T{<] = Kg(E[vs] + P 5(Ige — Pyese) "' Ev5:]).

Therefore, by definition of 47 in (50), we have that 45 = E[TS ], for i € 8, while
b(S) is given by (51). Now, we may define A5 = A} /K g, and b(8) = b(S)/K, thus
eliminating the dependence on the arrival of matrix 4. As for the objective function,
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by (49), and the fact that E[N, ] = p,; + A E[y,] we obtain:

-letl = Z (hr - Z pljh})clu - b(‘/l/) Z hj/\jE[v]] - Z hzgi’

1./ et jeN =

where / and b are as given in §5.2. Therefore the control problem can be solved by
running adaptive greedy algorithm &/ with input (7, ), where

fo=h,— ) p,h;, forie,
jeN

and since (7, A) does not depend on the arrival rates neither does the optimal policy.
Notice that in contrast to Klimov’s algorithm, with this method priorities are com-
puted from highest to lowest. This top-down algorithm was proposed by Lai and Ying
(1988) and by Nain, Tsoucas and Walrand (1989), who proved its optimality using
interchange arguments. Bhattacharya, Georgiadis and Tsoucas (1991) provided a
direct optimality proof.

Notice that by modeling the busy period of Klimov’s problem as a branching
bandit’s tax problem, using performance measure W, we obtain exactly Klimov’s
algorithm.

Moreover, in the case that the arriving jobs are divided into K projects, where a
class-k project consists of jobs with classes in a finite set .#;, jobs in .#} can only make
transitions within .#,, and .#" is partitioned as 4" = U K_ A, then it is easy to see that
the index decomposition theorem (Theorem 6) applies, and therefore we can decom-
pose the problem into K smaller subproblems.

6.3. Optimal scheduling without job arrivals; deterministic scheduling. There is a
batch of n jobs to be processed by a single server. Job i has a service requirement
distributed as the random variable v,, with Laplace transform W, It is clear how to
model this job scheduling process as a branching bandit process in which jobs have no
descendants. Let us consider first the discounted case: For a > 0 it is clear by
definition of 45, in (24), that A}, = a, for i € §. Therefore the performance
region of the vectors A“(«a) studied in §5.1 is a polymatroid. Consider the discounted
reward-tax problem discussed in §5.1, in which a instantaneous reward r, is received
at the completion of job i, and a holding tax ah, is incurred for each unit of time that
job i is in the system. Rewards and taxes are discounted in time with discount factor
a. By (21) it follows that the allocation index for job i, in the problem of maximizing
rewards minus taxes, is

y(@) = (4 ) Tk

Let us consider now the problem of minimizing the total weighted expected comple-
tion time of the jobs, where a holding cost #, is incurred per unit of time that a class i
job is in the system. By definition of A in (59), A} = E[y,], for i € S. Hence the
performance region of the performance vectors E[y,]W,", where W,* is the expected

system time of job i is the base of a polymatroid. Thus by Eq. (49) it follows that the
allocation index for job i in the undiscounted tax problem is y, = h, /Elv;]. We thus
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obtain that for every nonanticipative, nonpreemptive and nonidling scheduling policy
u,

(74) ZSE[U,]W,“ > %(('ZSE[UI])Z + .ZSE[U,]Z), for § c.#, and
Z/‘E[u,]W,“ = %(( ZI/'E[Ui])Z + Z/VE[U,]Z),

with equality in (74) if policy u gives priority to S-jobs. Queyranne (1993) character-
ized this performance region in the case that the processing times v, are determinis-
tic.

In the case that there are precedence constraints among the jobs that form
out-forests, i.e., each job can have at most onc immediate predecessor, the problem
can also be modeled as a branching bandit problem. The formulations developed in
this section apply therefore to it (see also Horn (1972) and Glazebrook (1976)).

7. Conclusions. We presented a polyhedral treatment of several classical prob-
lems in stochastic and dynamic scheduling using polyhedral methods that leads, we
believe, to a deeper understanding of their structural and algorithmic properties.
Indeed, we hope that our results will be of interest to applied probabilists, as they
provide new interpretations, proofs, algorithms, insights and connections to important
problems in stochastic scheduling, as well as to discrete optimizers, since they reveal a
new interesting structure (extended polymatroids), which has a genuinely applied
origin.
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